
QSMM Programmer Manual

for QSMM Version 1.18

26 January 2021

by Oleg Volkov

Copyright c© 2012, 2013, 2014, 2015, 2016, 2017, 2019, 2020, 2021 Oleg Volkov.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “GNU General Public License”,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

i

Table of Contents

Acknowledgements . 1

1 Introduction . 2
1.1 What Is Intelligence? . 2
1.2 Spur-driven Behavior . 3
1.3 Building Blocks for Intelligent Machines . 4
1.4 Animate Machines . 6
1.5 Obtaining QSMM . 9
1.6 Reporting Bugs and Getting Help . 9
1.7 QSMM Components . 9
1.8 System Requirements . 10
1.9 Installation . 11
1.10 API Basics . 12

1.10.1 Header Files . 12
1.10.2 Basic Datatypes and Macros . 13
1.10.3 Object Handles . 15
1.10.4 Error Handling . 18
1.10.5 Getting Library Version . 19

1.11 Linking with the Library . 19
1.12 Conventions for Datatypes . 19

2 Adaptive Probabilistic Mapping . 22
2.1 Event History . 22
2.2 Output Signal Selection . 23
2.3 Small and Large Actors . 24
2.4 Creating an Actor . 27
2.5 Repeated Sequence of Operations . 33

2.5.1 Incrementing Spur . 34
2.5.2 Incrementing Time . 34
2.5.3 Receiving Input Signals . 36
2.5.4 Emitting an Output Signal . 41

2.6 Customizing the Relative Probability Function . 48
2.6.1 Relative Probability Function Types . 49
2.6.2 Helper Relative Probability Functions . 51
2.6.3 Spur Perception . 53
2.6.4 Spur Weight . 54
2.6.5 Number of Output Signals . 55
2.6.6 Actor Temperature . 57

2.7 Specifying Output Signal Weights . 58
2.7.1 Setting a Weight for an Output Signal . 58
2.7.2 Preloading a Probability Profile . 59
2.7.3 Assigning a Preloaded Probability Profile . 61

2.8 Automatic Spur . 63
2.9 Switching Adaptive or Random Behavior . 64
2.10 Revising Action Choice States . 66
2.11 Example of Using the Actor API . 69

ii

3 Statistics Storage . 78
3.1 Storage Types . 78
3.2 Structures for Accessing Storage . 79
3.3 Retrieving and Storing Statistics . 81
3.4 Enumerating Action Choice States and Cycle Types . 87
3.5 Providing Initial Statistics . 89
3.6 Intercepting the Updates of Cycle Type Statistics . 93
3.7 Getting the Reason of a Storage Failure . 95
3.8 Example of Using the Storage API . 96

4 Multinode Model . 104
4.1 Principle of Operation . 104
4.2 Creating a Multinode Model . 108

4.2.1 Creating a Handle . 108
4.2.2 Defining Instruction Meta-classes . 113

4.2.2.1 Function Declaration . 113
4.2.2.2 Event Handling . 114
4.2.2.3 Registering the Function . 115
4.2.2.4 Instruction Class Identifiers . 116
4.2.2.5 Accessing Binary Instruction Parameters . 118
4.2.2.6 Setting Text Instruction Parameters . 119
4.2.2.7 Setting the Number of Instruction Outcomes . 121
4.2.2.8 Function Layout . 122

4.2.3 Defining Instruction Class Sets . 123
4.2.3.1 Function Declaration . 123
4.2.3.2 Event Handling . 124
4.2.3.3 Registering the Function . 126
4.2.3.4 Registering Instruction Classes . 127
4.2.3.5 Setting the Number of States . 133
4.2.3.6 Function Layout . 135

4.2.4 Node Parameters . 137
4.2.5 Creating Nodes . 139
4.2.6 Creating the Model Instance . 143
4.2.7 Associating Parameters with a Model . 146

4.3 Executing a Multinode Model . 147
4.3.1 Incrementing Time and Spur . 147
4.3.2 Transferring Control between Nodes . 149

4.3.2.1 Calling a Node . 149
4.3.2.2 Returning Control from a Node . 151
4.3.2.3 Terminating Model Execution . 151

4.3.3 Handling Instruction Invocation . 152
4.3.4 Setting Look-ahead Signals . 154
4.3.5 Setting Instruction Classes Weights . 155
4.3.6 Working with the Node Call Stack . 158
4.3.7 Switching Adaptive or Random Behavior . 160
4.3.8 Tracing Model Execution . 161

4.4 Listing a Multinode Model . 162
4.4.1 Dumping the State Transition Matrix . 162
4.4.2 Dumping the Action Emission Matrix . 165
4.4.3 Entity References . 168
4.4.4 Enumerating Entities . 171

4.5 Error Handling for a Multinode Model . 172

iii

5 Assembler Programs . 179
5.1 Basic Datatypes . 179
5.2 Assembler Program Syntax . 180
5.3 Assembler Instructions . 181

5.3.1 jmp Instruction . 181
5.3.2 jprob Instruction . 182
5.3.3 choice Instruction Block . 182
5.3.4 joe Instruction . 183
5.3.5 stt Instruction . 184
5.3.6 nop and nop1 Instructions . 188
5.3.7 lookup Instruction . 189
5.3.8 abort Instruction . 189
5.3.9 User Instructions . 190

5.4 Disassembling a Node . 190
5.5 Inspecting an Assembler Program . 195
5.6 Printing an Assembler Program . 196
5.7 Parsing an Assembler Program . 202
5.8 Loading a Parsed Program into a Node . 203
5.9 Using Probability Variables . 209

5.9.1 Variables in an Assembler Program . 209
5.9.2 Controlled Variables . 210
5.9.3 Output Variables . 213
5.9.4 Output Arrays . 219
5.9.5 Auxiliary Variables . 224

5.10 Cloning the Probability Profile . 224
5.11 Memory Efficient Cloning the Probability Profile . 226
5.12 Unloading the Probability Profile . 229
5.13 Using the Assembler Preprocessor . 229

5.13.1 Changing Line Number and File Name . 230
5.13.2 Including Other Source Files . 230
5.13.3 Defining Symbols . 230
5.13.4 Defining Macros . 231
5.13.5 Generating Unique Location Labels . 232
5.13.6 Getting Preprocessed Output . 233

5.14 Example of Working with an Assembler Program . 234

6 Miscellaneous Topics . 245
6.1 Random Number Generators . 245

6.1.1 Creating a Random Number Generator . 245
6.1.2 Generating Random Numbers . 246
6.1.3 Custom Random Number Generators . 247

6.2 Ordinary and Sparse Vectors . 250
6.3 Messages and Message Lists . 251

6.3.1 Creating Messages . 252
6.3.2 Creating a Message List . 254
6.3.3 Adding Messages to a Message List . 255
6.3.4 Printing Messages . 256

6.4 Exchanging Data Packets in a Multithreaded Program [EXPERIMENTAL] 258
6.4.1 Registering Interaction Sides . 259
6.4.2 Exchanging Data Packets Between Sides . 259
6.4.3 Tracing the Exchange of Data Packets . 260
6.4.4 Error Handling . 261

6.5 The Implementation of Functionality of STL map Template . 262

iv

6.5.1 Creating Maps and Iterators . 262
6.5.2 Operations on Maps . 265
6.5.3 Operations on Iterators . 266

7 Example Programs . 269
7.1 pic-guess . 269
7.2 test . 270
7.3 topdown . 277

7.3.1 Template Grammar Format . 277
7.3.2 Parsing a Token Sequence . 283
7.3.3 Output Information . 286
7.3.4 Iterative Determinization . 294
7.3.5 Examples . 295

8 Auxiliary Programs . 318
8.1 pcfg-generate-seq . 318
8.2 pcfg-predict-eval . 319
8.3 mk-rg-vit.sh . 325
8.4 pcfg-reach . 327
8.5 rege-asm . 328

8.5.1 Command-Line Format . 328
8.5.2 Assembler Instruction Set . 329
8.5.3 Assembler Program Structure . 331

8.6 rege-test . 335
8.7 least-sq-test . 337
8.8 parse-asm . 337
8.9 asm-disasm . 338

GNU General Public License . 341

GNU Free Documentation License . 347

Function and Macro Index . 352

Type Index . 355

Concept Index . 356

1

Acknowledgements

The author of this manual expresses thanks to the following people who helped improve its
quality:

• Bryan Barnes for

– proofreading a number of sections in Chapter 1 [Introduction], page 2: Section 1.1
[What Is Intelligence?], page 2, Section 1.2 [Spur-driven Behavior], page 3, Section 1.3
[Building Blocks for Intelligent Machines], page 4, and Section 1.4 [Animate Machines],
page 6;

– giving advice on improving the writing style.

• Karuna Shankar for

– proofreading remaining sections in Chapter 1 [Introduction], page 2;

– proofreading Section 3.1 [Storage Types], page 78.

• Meirav Ben Moshe for

– proofreading the introductory text of Chapter 2 [Adaptive Probabilistic Mapping],
page 22, and a set of sections in that chapter: Section 2.1 [Event History], page 22,
Section 2.3 [Small and Large Actors], page 24, Section 2.5.2 [Incrementing Time],
page 34, Section 2.5.1 [Incrementing Spur], page 34, Section 2.6 [Customizing the
Relative Probability Function], page 48, Section 2.9 [Switching Adaptive or Random
Behavior of an Actor], page 64, and Section 2.11 [Example of Using the Actor API],
page 69;

– proofreading the introductory text of Chapter 4 [Multinode Model], page 104;

– proofreading the introductory text of Section 4.2.2 [Defining Instruction Meta-classes],
page 113, and a number of subsections in that section: Section 4.2.2.1 [Instruction
Meta-class Function Declaration], page 113, Section 4.2.2.3 [Registering the Instruction
Meta-class Function], page 115, Section 4.2.2.6 [Setting Text Instruction Parameters],
page 119, and Section 4.2.2.8 [Instruction Meta-class Function Layout], page 122;

– proofreading the introductory text of Section 4.2.3 [Defining Instruction Class Sets],
page 123, and a number of subsections in that section: Section 4.2.3.1 [Instruction Class
Set Function Declaration], page 123, Section 4.2.3.3 [Registering the Instruction Class
Set Function], page 126, and Section 4.2.3.6 [Instruction Class Set Function Layout],
page 135;

– proofreading Section 4.3.7 [Switching Adaptive or Random Behavior of a Multinode
Model], page 160, Section 4.2.7 [Associating Parameters with a Model], page 146, and
Section 4.3.8 [Tracing Model Execution], page 161;

– proofreading the introductory text of Chapter 5 [Assembler Programs], page 179, and
a set of sections in that chapter: Section 5.1 [Basic Datatypes for Assembler Pro-
grams], page 179, Section 5.2 [Assembler Program Syntax], page 180, and Section 5.3
[Assembler Instructions], page 181, with all nested subsections;

– explaining important points of English grammar.

Meirav offers writing, proofreading, and Hebrew-English translation services. See her web-
site, http://www.meiravb.com, for more information.

• Robert Booth for

– proofreading Section 6.3 [Messages and Message Lists], page 251, with all nested sub-
sections;

– proofreading Section 6.4 [Exchanging Data Packets in a Multithreaded Program],
page 258, with all nested subsections.

mailto:brybarnes@gmail.com
mailto:karu_bs@yahoo.com
mailto:meirav.ben.moshe@gmail.com
http://www.meiravb.com
mailto:toothrobber@rogers.com

2

1 Introduction

QSMM is the recursive acronym for “QSMM State Machine Model.” State machine is a gen-
eral concept applicable to many fields of knowledge. A state machine has a set of states, an
overall machine’s state, and can perform transitions between states from this set. The author
believes that the concept of state machine is also fundamental to our experience of conciousness
connected with our intelligent behavior. QSMM helps create state machines for systems with
intelligent behavior. Algorithms implemented in QSMM and its specific application in a system
put constraints on the degree of intelligence of system behavior.

A set of states of a state machine, a specification of possible transitions between them, and
rules for performing actual transitions between the states are part of a state model. The state
machine executes the state model—performs actual transitions between the states according to
the state model and maintains the overall machine’s state. Actual state transitions affect how
the system is communicating with an environment, whereas possible state transitions are part
of a framework for such communication.

An intelligent state model is a state model that allows a state machine to exhibit intelligent
behavior. In QSMM, intelligent behavior implies that rules for performing actual transitions
between the states are adaptive with the goal to achieve a desired result—intelligent state model
means adaptive state model.

To develop a system, a programmer needs to program its state model for execution by a
computer. To facilitate the development, the programmer can use various function libraries and
frameworks. QSMM is an intelligent state model development framework. It is a C function and
macro library with rudiments of a toolchain for adaptive state model development. By author’s
belief, QSMM could advance the development of systems with intelligent behavior.

The QSMM package source code is distributed under the terms of the GNU General Public
License, Version 3 or any later version published by the Free Software Foundation. See [GNU
General Public License], page 341, for the text of the License.

This manual specifically is covered by the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. See [GNU Free Documentation
License], page 347, for the text of the License.

Software described in this manual is without any warranty. The software is provided “as is,”
in the hope that it will be useful. See the GNU General Public License, for more details.

1.1 What Is Intelligence?

There are many definitions for intelligence as well as types of intelligence. Most definitions
include lists of activities inherent to humans, such as reasoning, planning, solving problems,
thinking abstractly, comprehending complex ideas, learning from experience, and adapting ef-
fectively to the environment. When attempting to develop intelligent machines, researchers try
to make them perform a subset of those activities with as high a level of plausibility as possible.
However, from the standpoint of knowledge formalization and for a more precise formulation of
research goals, it would be useful to point out the smallest subset of such activities to establish
that an animate being or inanimate machine performing them is intelligent enough.

First, it is necessary to mention that intelligence implies a goal (in the “Handbook of Human
Intelligence” Sternberg and Salter defined intelligence as “goal-directed adaptive behavior”). In
the case of animate being, the goal could be surviving, and in the case of a machine created
by humans, the goal could be solving tasks assigned by humans. Animals show their basic
intelligence, for example, when they adapt to the environment, seek for food, and build nests.
One can say today’s machines show their intelligence by effectively performing tasks people
created those machines to perform. This is not a too distorted interpretation of intelligence if

Chapter 1: Introduction 3

we review the book “Symbolic Logic and Intelligent Machines” of Edmund C. Berkeley published
in 1959, where the author called intelligent machines electromechanical arrangements capable
of solving problems that involve logic.

Let us assume that all animals possess a basic level of intelligence. An advanced level of
intelligence would be the production and use of work tools. As it turned out, the production
and use of work tools is specific not only to humans but also to chimpanzees and to a number
of other animals. For example, chimpanzees are able to find stones of appropriate weights and
sizes and crack nuts using them. The chimpanzees are also able to find long and thin sticks and
use them to kill small rodents living in the trunks of a certain species of trees and extract killed
rodents for food. It is important to mention that the chimpanzees not only find ready-to-use
work tools in nature but can also produce them. For example, the chimpanzees can construct
arrangements consisting of small tree branches and put them into termite mounds to eat termites
crawled on them. Another example is an experiment conducted on a pygmy chimpanzee when
experimenters successfully trained him to manufacture a sharp stone tool for cutting a string to
open the door of a chamber with sweets.

In a digital world supported by computers, work tools are computer programs helping solve
various tasks. In a computer environment, the aforementioned advanced level of intelligence
is the capability to synthesize and use computer programs and algorithms. A machine with
the advanced level of intelligence should be capable of automated synthesis of algorithms in
some form or fashion. Such an algorithm might have a form of an ordinary computer program,
possibly containing a set of subroutines.

There does exist a higher level of intelligence—we shall call it an expert level of intelligence,—
specific only to humans and not to chimpanzees. Indeed, what is an essential difference between
humans’ and chimpanzees’ intelligence if they both produce and use work tools?

In the book “The complete idiot’s guide to Human Prehistory,” its author Robert J. Meier
briefly noted an important fact about the production and use of burins. Such specially sharp-
ened stones archaeologists find during excavations corresponding to the time when, tentatively
speaking, we can call creatures that have been living on Earth humans. Burins are tools created
for manufacturing other tools. The chimpanzees do not make tools for making other tools. That
is, the expert level of intelligence peculiar to humans is the ability to organize processing chains
where one kind of work tools takes part in the production of other kinds of work tools. The
established concept for this is production of the means of production.

For the computer environment, programmers develop such tools as compilers, various operat-
ing, execution, and development environments to simplify developing other computer programs.
A machine with the expert level of intelligence would be capable of the automated synthesis
of algorithms that the machine would execute to synthesize other algorithms to solve problems
assigned by humans more efficiently. The creation of such a machine is a quite specific goal
researchers could try to achieve.

1.2 Spur-driven Behavior

A basic problem one needs to solve when creating an intelligent machine that performs auto-
mated synthesis of algorithms is discovering a way or manner in which a job is assigned to the
machine. There are sophisticated approaches to solving this problem, for example, by creating
specifications consisting of rules and constraints. A simpler approach is reducing an algorithm
synthesis task to an optimization task. In this approach, a task resolution assessment unit as-
sesses a result of execution of a version of a synthesized algorithm; the machine makes changes
to this version to hopefully produce a version with a better assessment score. A classical ap-
proach to solving optimization tasks of this kind is genetic algorithms. A genetic algorithm
would evolve a target algorithm by trial and error in multiple iterations to maximize the value
of a fitness function.

Chapter 1: Introduction 4

Another approach to solving an algorithm synthesis task as an optimization task is an ap-
proach where the machine synthesizes an algorithm simultaneously with its execution. An
executed algorithm may perform necessary interactions with an environment. The task reso-
lution assessment unit provides continuous feedback on results of execution of the algorithm,
and the machine continuously attempts to improve it. A behavior exhibited by the machine is
reinforcement learning.

A machine can exhibit this behavior without keeping an explicit representation of a syn-
thesized algorithm. QSMM maintains a representation of a synthesized algorithm as a finite
automaton.

Historically, a numerical quantity specifying a component of the fitness of a synthesized
algorithm is called spur in QSMM; the type of such component is called spur type. QSMM

supports multiple spur types for an optimization task, although it is better to use a smaller
number of spur types for the optimization to be more efficient. A spur value can be, for ex-
ample, the logarithm of a probability to maximize, an energy value to minimize, or the sum of
rewards or incentives given to a machine when a partially synthesized algorithm reaches some
points in solving a task. For time-dependent feedback on the fitness of a synthesized algorithm,
QSMM supports the optimization goal “maximize spur increment velocities” or “maximize spur
decrement velocities”.

A programmer should provide a spur evaluation method that allows a machine to better
understand a correlation between changes made to an algorithm being synthesized and observed
changes to spur values. Developing a proper spur evaluation method can be one of the most
complex tasks to solve when creating an intelligent machine using the QSMM framework.

1.3 Building Blocks for Intelligent Machines

Consider an artificial neuron with one input and many outputs. Activation of the input leads
to activation of one of the outputs where the choice of an activated output is probabilistic. A
set of such neurons is a probabilistic mapping—a function that ambiguously maps an argument
from a set of possible arguments to a result from a set of possible outcomes. Such function,
when invoked one time, can return one result, and when invoked another time, can return yet
another result for the same argument.

If every argument of a probabilistic mapping has a corresponding set of outcomes with fixed
probabilities, we call the probabilistic mapping a fixed probabilistic mapping.

An important concept related to the possibility of using a result of a probabilistic mapping
(directly or after transforming) as an argument (or as its part) of this probabilistic mapping is
state—a variable that changes its value based on its previous value.

A fixed probabilistic mapping can model a probabilistic finite automaton. An argument of
such probabilistic mapping is a superposition of the previous automaton state and an input signal
received. A result of the probabilistic mapping is the next automaton state (or a superposition
of the next automaton state and an output signal emitted).

To establish a uniform state transition model, it is tempting to treat a set of possible states
of a probabilistic mapping as a Cartesian product of sets of possible sub-states making up a
full state. In this sometimes useful approach, a resulting set of states can be very large. As
sub-states from different sets usually interrelate with each other, the actual number of possible
states is often much smaller. They resemble perceived states—mental model states a researcher
realizes when learning or programming the behavior of an entity. When using QSMM, we will
tend to work with such perceived states.

A probabilistic finite automaton can have a representation in the form of a probabilistic
program. In particular, such probabilistic program may be a probabilistic assembler program—
an assembler program containing probabilistic jump instructions. If there are no probabilistic

Chapter 1: Introduction 5

jump instructions in the assembler program, the finite automaton and the assembler program
are deterministic.

The instruction set of a probabilistic assembler program may consist of:

1. Custom instructions for performing effective work. Every such instruction can return an
outcome from a set of possible outcomes.

2. The probabilistic jump instruction. It transfers control to a custom instruction at a specific
location in the program with a given probability.

3. The conditional jump instruction. It transfers control to a custom or probabilistic jump
instruction at a specific location in the program on the basis of an outcome returned by a
previously invoked custom instruction.

4. The simple jump instruction. It transfers control to a custom instruction at a specific
location in the program unconditionally.

Locations of custom instructions in the assembler program represent states of the probabilistic
finite automaton. An argument of a fixed probabilistic mapping backing up that finite automaton
is a superposition of a location of a custom instruction invoked and an outcome returned by
the custom instruction. An outcome of this fixed probabilistic mapping is a location of the
next custom instruction to invoke. Simple jump instructions, conditional jump instructions,
and probabilistic jump instructions in the assembler program map a particular argument of this
probabilistic mapping to a set of possible outcomes with fixed probabilities.

A program usually contains a set of subroutines. A probabilistic assembler program may
contain custom instructions for calling subroutines and custom instructions for returning control
back. A probabilistic finite automaton may represent every subroutine. Calling a subroutine
means pushing a reference to a current probabilistic finite automaton and its current state to
a stack and transferring control to the initial state of another probabilistic finite automaton.
Returning control from the subroutine means popping the reference to the current automaton
and its current state from the stack and transferring control to that state.

We can implement modulating the behavior of a probabilistic mapping by spur. Supposing a
result returned by a probabilistic mapping for its specific argument somehow affects the spur, a
desired behavior of the probabilistic mapping for this argument would be returning more often
an outcome that leads to a greater absolute spur value (a positive value if the goal is to maximize
the spur, or a negative value if the goal is to minimize the spur) or a greater spur increment
or decrement velocity. We call a probabilistic mapping with such desired behavior an adaptive
probabilistic mapping.

An adaptive probabilistic mapping helps produce goal-directed adaptive behavior: return
more often outcomes that bring a machine closer to a goal where the spur measures a proximity
to the goal. An intelligent machine might include various superpositions of adaptive probabilistic
mappings, its inputs and outputs, and those superpositions would specify an adaptive generic
state model aimed to solve general or specific problems.

In QSMM, actor is an adaptive probabilistic mapping that works similarly to a fixed proba-
bilistic mapping, but instead of fixed outcome probabilities, it uses probabilities adjusted adap-
tively. An actor is a generic block for building intelligent machines.

If a fixed probabilistic mapping that backs up a probabilistic finite automaton becomes an
adaptive probabilistic mapping, the automaton becomes an adaptive probabilistic finite au-
tomaton. Consequently, a probabilistic assembler program the automaton represents becomes
an adaptive probabilistic assembler program.

Using QSMM, a researcher can develop adaptive probabilistic assembler programs producing
goal-directed behavior. As one may realize, adaptive probabilistic assembler programs is a step
towards the automated synthesis of algorithms.

Chapter 1: Introduction 6

An assembler program represents a state model, and a subroutine of the assembler program
represents a state sub-model. In QSMM, node means a callable state sub-model. If a state model
contains multiple nodes, we call it multinode model. A node is a probabilistic finite automaton
corresponding to a probabilistic assembler program. Node execution is the operation of this
finite automaton. The finite automaton and the assembler program turn into their adaptive
counterparts during node execution.

The synthesis and execution of subroutines a researcher could relate to setting up processing
chains with the production and use of various work tools.

1.4 Animate Machines

How to implement a probabilistic mapping? For its particular argument, a machine could gener-
ate probabilities of all possible outcomes. Then, the machine would randomly select a particular
outcome according to those probabilities, for example, using a random number generator.

How can the machine perform such selection? Let us assume that the random number
generator can return two numbers, 0 or 1, with equal probabilities. A straightforward approach
to utilizing that random number generator is performing a fixed number of calls to the generator
to obtain a binary fractional number in the range 0 to 1. All possible outcomes are non-
overlapping segments on a line of length 1, where the length of every segment is equal to the
probability of a corresponding outcome. To determine an outcome, the machine finds a segment
containing the point at a distance equal to the binary fractional number from the beginning of
the line.

For example, if three calls to the random number generator returned numbers 1,
0, and 1, then the binary fractional number is 0.101. This binary number is equal to
1*2-1+0*2-2+1*2-3=2-1+2-3=0.5+0.125=0.625. If four possible outcomes have probabilities
0.125, 0.5, 0.125, and 0.25, then the segments end at distances 0.125, 0.625, 0.75, and 1 from
the beginning of the line. Assuming points at the ends of the segments are not parts of those
segments, number 0.625 falls in the third segment, that is, the probabilistic mapping returns
the third outcome.

At present, QSMM uses this approach to select an outcome of a probabilistic mapping ac-
cording to probabilities of all possible outcomes. However, this approach has a drawback: it is
hard to evaluate how much information from the random number generator the machine uses
to select a particular outcome.

A different approach is putting more load on the random number generator to select a less
probable outcome and putting less load on the random number generator to select a more
probable outcome. In the extreme case, when an outcome has probability 1, and all other out-
comes have probability 0, the machine selects the outcome without calling the random number
generator at all.

In this approach, the machine builds a binary Huffman tree for a list of outcome probabilities
and then traverses nodes of the Huffman tree from the root node to a leaf node representing a
selected outcome by calling the random number generator at each traversed non-leaf node to
select one of its two child nodes. This approach, however, implies rounding outcome probabilities
to 2-k , where k is the depth of a leaf node, and works better for a sufficiently large number of
possible outcomes.

Generally, the greater is the probability of a leaf node, the shorter is a path to it from the root
node, and, therefore, a lesser number of calls to the random number generator is necessary to
select the leaf node. Thus, it is easier to select a more probable outcome, because this selection
requires a lesser number of actions to perform.

For our example with outcome probabilities 0.125, 0.5, 0.125, and 0.25, the Huffman tree is:

Chapter 1: Introduction 7

Figure 1.1: Huffman Tree for Probabilities 0.125, 0.5, 0.125, and 0.25

For the above Huffman tree, the machine selects the most probable second outcome with
probability 0.5 if a call to the random number generator returns 1. The machine selects the
least probable first or third outcome with probability 0.125 if three calls to the random number
generator return the sequence 0, 1, 0 or 0, 1, 1 respectively. The average number of calls to the
random number generator for the Huffman tree is equal to 0.125*3+0.5*1+0.125*3+0.25*2=1.75.

For four equal outcome probabilities 0.25, the Huffman tree is:

Figure 1.2: Huffman Tree for Four Probabilities 0.25

For the above Huffman tree, the number of calls to the random number generator to select any
outcome is 2. On average, this Huffman tree puts more load on the random number generator
to select an outcome compared to the Huffman tree in Figure 1.1.

Thus, in this approach, the average number of calls to the random number generator depends
on a degree of difference between outcome probabilities—if some probabilities are much greater
than others, the number of calls is less, and, if all probabilities are more or less equal, the number
of calls is greater. Looks like this principle is relevant to the physical environment—for a less
probable event to occur, more random events have to happen.

Supposing a call to the random number generator has constant choice complexity, selecting
a particular outcome of a probabilistic mapping has choice complexity equal to this constant
choice complexity multiplied by the number of calls to the random number generator required
to perform the selection. Average choice complexity is equal to the constant choice complexity

Chapter 1: Introduction 8

multiplied by the average number of calls to the random number generator required to select an
outcome.

However, a call to the random number generator might not have constant choice complexity.
Choice complexity for a stochastic act of selecting number 0 or 1 by the random number generator
might depend on the number of possible distinguished outcomes the act has. If the outcomes
are similar, the number of distinguished outcomes will be less than 2.

The distinguishability of outcomes might affect how the stochastic act changes the entropy
of nature. For example, when water is boiling in a kettle, water molecules move rapidly, and
a possible location of a water molecule after a fixed period of time varies greatly. However,
locations of water molecules in the kettle probably do not affect much—a usable outcome would
be hot water in the kettle to make tea. In this case, the complexity of choice lying with a water
molecule may be low. On the other hand, if the next location of a molecule affects a resolution of
a stochastic optimization task where to search planets in space for colonization, the complexity
of choice lying with the molecule may be high.

If nature is a self-sustaining environment, one can interpret the complexity of choice as the
amount of change necessary to perform to sustain the environment as a result of various outcomes
of a stochastic act. Supposing time is closed like space might be, sustaining the environment
requires continuous effort throughout all time-space continuum.

Let us consider an adaptive probabilistic mapping. If an outcome correlates with a desired
change in spur, and other outcomes have a lesser correlation, then the outcome will have a greater
probability compared to other outcomes. Supposing an outcome always leads to a desired change
in spur, and all other outcomes never lead to such change, the outcome would have probability
1 and all other outcomes would have probability 0—the choice of a result of the probabilistic
mapping for the argument would be deterministic. On the other hand, if all outcomes equally
lead to a desired change in spur, all those outcomes will have equal probabilities (that sum up
to 1).

Suppose the machine solves an optimization task consisting in the maximization of spur in-
crement velocity and the machine has learned how to achieve a constant increase in this velocity.
The adaptive probabilistic mapping would have an argument with one of its corresponding out-
comes with a significantly greater probability than all other outcomes for the argument. This
outcome takes part in reinforcing a behavior to constantly increase the spur increment veloc-
ity. The machine puts a little load on the random number generator to select an outcome for
this argument, because one outcome has a significantly greater probability, and this outcome
becomes a result most of the times.

Consider a situation that, at a particular point of time, the increment velocity has gone down,
so the machine needs to change its own behavior to increase the increment velocity even more.
The outcome with a significantly greater probability has now a lesser probability approximately
equal to probabilities of some other outcomes for that argument. The probabilities of outcomes
for other arguments may also change in a similar way. The machine engages the random number
generator in a greater extent for selecting outcomes according to those new lists of probabilities.

In other words, the machine is now in a difficult situation that means an increase of average
complexity of choices the machine has to perform to increase the increment velocity. Would
the machine feel that the situation is difficult? (To answer this question, one can consider the
amount of energy supplied to the random number generator.)

A computer running a pseudo-random number generator can simulate the behavior of a prob-
abilistic mapping. Running the pseudo-random number generator is a deterministic process—the
way today’s computers operate. The computer might use a random number generator imple-
mented as a physical unit running a stochastic physical process. We can consider this unit as
an interface to a (probabilistic) mapping provided by nature. A stochastic act will then be
calling such mapping to return a result for a particular argument. If a probabilistic mapping is

Chapter 1: Introduction 9

an electric circuit, it is more straightforward to use stochastic physical processes as a source of
randomness.

One could relate the abstract idea of good and bad to the concept of choice complexity.
The good would support a certain level of choice complexity. The survival of an animate being
would be preserving its ability to perform choices with a sufficient degree of complexity. This
has something in common with the definition of life as a characteristic which distinguishes
objects that have signaling and self-sustaining processes from those that do not. In our case, the
signaling is the way of exchanging information within superpositions of probabilistic mappings,
and the basic self-sustaining process is supporting certain level of choice complexity.

1.5 Obtaining QSMM

The official homepage of QSMM project:

http://qsmm.org

The project profile hosted at SourceForge.net contains additional information on the project:

http://sourceforge.net/projects/qsmm/

A package distribution is available on the project files page provided by SourceForge.net:

http://sourceforge.net/projects/qsmm/files/

1.6 Reporting Bugs and Getting Help

The QSMM users mailing list is a place for discussing all things QSMM. To subscribe to the
mailing list, unsubscribe from the list, view list archives, and perform other actions, use its
information page:

https://lists.sourceforge.net/lists/listinfo/qsmm-users

The following types of feedback should go to the mailing list:

• Bugs. For quicker fixing bugs in QSMM and its documentation, please report them.

• New feature requests. If you would like to see a new feature in QSMM (e.g. a new API

function to make it possible or simpler to write some kind of applications), then please
submit a description of this feature.

• Questions and technical support. The author encourages QSMM users to ask questions, ask
for technical support, and inform about real examples of package use.

Do not be embarrassed by a small number of messages in the list archives—be the first to
report a bug, submit a feature request, or ask a question!

1.7 QSMM Components

The QSMM package consists of the following main components:

• Actor implementation. Actor is an adaptive probabilistic mapping. An actor has a number
of adjustable modes and parameters and supports limited customization of its algorithms.
The Actor API makes it possible to create and destroy actors and perform various operations
on them. The main operation is obtaining an outcome for a particular argument. Supplying
the spur to an actor modulates causal relationships between the arguments and outcomes.

• Multinode model engine. It is an engine for running adaptive (“intelligent”) state mod-
els. The engine relies on actors to achieve adaptive behavior. A node, a state sub-model
represented by a probabilistic finite automaton, interacts with an environment by means of
executing assembler instructions. A developer provides a set of those assembler instructions
and their implementations as callback functions. By default, every node is a probabilistic
finite automaton of uniform structure—it has all states connected in all possible ways with
equal probabilities.

http://qsmm.org
http://sourceforge.net/projects/qsmm/
http://sourceforge.net/projects/qsmm/files/
https://lists.sourceforge.net/lists/listinfo/qsmm-users

Chapter 1: Introduction 10

• Assembler. Parses a probabilistic assembler program and converts it to a probabilistic finite
automaton. The assembler program defines the probabilities of transitions between states
of this finite automaton. The probabilities specify soft and hard constraints on automaton
behavior.

• Disassembler. Converts a probabilistic finite automaton with state transition probabilities
adjusted by spur modulation back to a probabilistic assembler program.

The QSMM package also includes auxiliary components that may simplify developing pro-
grams:

• Tree map implementation. A C implementation of functionality of STL map and multimap

templates. A developer can use it to create ordered tree mapping objects in C programs
without the need to rewrite those programs in C++.

• Simple packet exchange. A simple API for exchanging data packets in multithreaded pro-
grams according to “producers-consumer” model. A developer can use this API, for example,
to model a system and an environment running in two separate threads and communicating
with each other.

1.8 System Requirements

System requirements include operating system requirements, compiler requirements, POSIX

threads API notes, a reference hardware environment, library dependencies, and a software
environment for building the package documentation.

Operating System—GNU/Linux

QSMM version 1.18 supports building and using on a GNU/Linux system. The author has not
tested building this package version in other environments (e.g. Cygwin).

C Compiler—GCC

The author was building the package by gcc version 8.3.

POSIX Threads API Notes

The simple packet exchange API (Side API—see Section 6.4 [Exchanging Data Packets in a
Multithreaded Program], page 258, for more information on this API), tests/side1.c, and a
few example programs use the POSIX threads API.

On disabling the use of POSIX Threads API, a built QSMM library does not include the Side
API, and the command make does not build tests/side1.c.

Reference Hardware Environment

The author was building the package and running example programs in the following hardware
environment:

• Intel R© Celeron R© CPU @ 2.1 GHz, 1 core

• 1 GB RAM

At present, QSMM consumes memory inefficiently: QSMM can allocate large memory blocks
that are never or rarely accessed. Eliminating this deficiency will lead to significantly less
memory consumption by QSMM.

Library Dependencies

Optional but default library dependencies are the gsl (GNU Scientific Library) and ncurses

(console display library). The author used the following versions of those libraries to build the
package:

• gsl 2.5

Chapter 1: Introduction 11

• ncurses 6.1

gsl (GNU Scientific Library)

The main default dependency is GNU Scientific Library (http://www.gnu.org/software/
gsl/). This library provides the package with a high-quality pseudo-random number generator.
Additionally, a few tests use this library to solve systems of linear equations.

On disabling a dependency on gsl:

• The package uses a pseudo-random number generator implemented by the function rand

from the standard C library.

• The command make does not build tests/ic_weight.c and tests/var_ctrl.c. Those
tests use this library to solve systems of linear equations.

The function rand from the standard C library has the following drawbacks:

– it is usually a very simple function not intended to pass serious statistical tests for pseudo-
random number generators;

– streams of pseudo-random numbers returned by that function may vary on different plat-
forms;

– that function does not support multiple instances of a pseudo-random number generator
seeded separately.

QSMM starting from version 1.15 can also utilize a user-supplied random number generator,
for example, implemented by a developer by hand or which is a wrapper for a random number
generator provided by another library.

ncurses (console display library)

A few example programs use ncurses (http://www.gnu.org/software/ncurses/
), a console display library. On defining the macro VISUALIZE when building tests/disasm2.c

or tests/lookup2.c, those tests also use this library.

On disabling a dependency on ncurses, the command make does not build the example
programs labyr2, pic-guess, and maze-asm.

Building the Documentation

Building the QSMM documentation in various formats requires the presence of additional pack-
ages in the system. Below is their list along with versions used by the author:

• asymptote 2.41

• dvipsk 5.999

• imagemagick 7.0.8

• ghostscript 9.26

• texinfo 6.6

• texlive 2019

1.9 Installation

For package installation instructions, refer to the file INSTALL located in the root of the package
distribution. This manual does not include those installation instructions to avoid duplication.
The installation instructions also describe building documentation files, including this manual.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/ncurses/
http://www.gnu.org/software/ncurses/

Chapter 1: Introduction 12

1.10 API Basics

A C program that uses QSMM includes one or more its header files. The main header file is
qsmm.h. The #include <qsmm/qsmm.h> directive includes that file in the C program.

The header file sig.h included in qsmm.h defines datatypes and macros for signals—integer
values that are possible outcomes and parts of an argument of a probabilistic mapping.

Object handles reference objects of various types. An object handle of qsmm_actor_t type
references an adaptive probabilistic mapping.

All API functions report errors in a unified manner—via a result of int type, where negative
results are error codes. A multinode model supports assigning an error handler to it for simpler
reacting on errors in usual situations.

There exists an API function for retrieving the version of a QSMM library.

1.10.1 Header Files

The configure script sets the root directory for C header files. By default, it is the di-
rectory /usr/local/include/. The command make install installs public QSMM header
files to the subdirectory qsmm. Therefore, for default parameters of configure script invo-
cation, the command make install installs the public QSMM header files to the directory
/usr/local/include/qsmm/. You can specify a different root directory for C header files by
a command-line option of configure script. See the file INSTALL in the root of the package
distribution for more information.

Below is the list of public header files installed:

qsmm.h This is the main header file of QSMM framework. It contains most of datatype,
function, and macro definitions a developer may need.

err.h [New in QSMM 1.17] This header file contains declarations of error codes, the pro-
totype of qsmm_err_str function for obtaining the description of an error code, and
declarations necessary for handling error conditions for a multinode model. An error
handler function assigned to the multinode model receives information about such
error conditions. See Section 1.10.4 [Error Handling], page 18, for basic information
on handling error conditions. The header file qsmm.h includes this header file.

sig.h [New in QSMM 1.17] This header file contains declarations of qsmm_sig_t and
qsmm_ssig_t datatypes and QSMM_SIG_INVALID, QSMM_SIG_MAX, QSMM_FMT_PRI_

SIG, QSMM_FMT_PRI_SSIG, and QSMM_FMT_SCN_SIG macros. See Section 1.10.2 [Ba-
sic Datatypes and Macros], page 13, for more information on those datatypes and
macros. The header files qsmm.h and err.h include this header file.

handle.h [New in QSMM 1.17] This header file contains declarations of incomplete types for
object handles. See Section 1.10.3 [Object Handles], page 15, for more information
on object handles. Along with the incomplete types for object handles, this header
file declares the enumeration qsmm_handle_e listing possible object handle types,
the union qsmm_handle_u representing any object handle, and the structure qsmm_
handle_s consisting of an object handle type and an object handle value. The
header file qsmm.h includes this header file.

refe.h [New in QSMM 1.17] This header file contains datatypes for entity references. In
QSMM version 1.18, entity references unambiguously specify entities related to er-
ror conditions for a multinode model. An error handler function assigned to the
multinode model can receive entity references as part of an argument. Additionally,
entity references identify entities in a multinode model when enumerating them. See
Section 4.4.3 [Entity References], page 168, for more information. The header files
qsmm.h and err.h include this header file.

Chapter 1: Introduction 13

side.h A self-contained header file for the Side API. That simple API provides means for
exchanging data packets, especially signals, between threads in a multithreaded pro-
gram. In some cases, program structure with a number of interacting sides executing
in separate threads and exchanging data packets can increase program work speed
or simplify program development or experimenting. See Section 6.4 [Exchanging
Data Packets in a Multithreaded Program], page 258, for more information on the
Side API.

The command make install installs this header file when the configure script has
configured the package to use the POSIX threads API (see the file INSTALL in the
root of the package distribution for information on package configuring).

map.h A self-contained header file for the C implementation of functionality of STL map

and multimap templates.

version.h

A header file with the macro QSMM_HEADERS_VERSION defined to package version.
A developer can use this macro to check whether versions of the headers and the
library conform. The command make generates the content of version.h using the
template qsmm/version.h.in in the package distribution. The header file qsmm.h

includes this header file.

To include the aforementioned header files in a C program by a preprocessor #include

directive, a developer should specify the directory prefix qsmm. For example, to include the
header file qsmm.h, the developer should specify

#include <qsmm/qsmm.h>

The extern "C" declarations wrap C functions declared in the header files. When a C++
source file includes the header files, those declarations provide correct linkage with functions
contained in the QSMM library.

1.10.2 Basic Datatypes and Macros

The basic notion used in QSMM is signal. Signals are parts of an argument of a probabilistic
mapping. A result of a probabilistic mapping is also a signal. Signals are the carriers of
actions. In QSMM, non-negative integers identify signals. The maximum possible value of a
signal identifier depends on a datatype used to hold the identifier. As the number of possible
signals can be critical for a particular application, special datatypes exist for signal identifiers.
The header file sig.h included in qsmm.h and err.h defines those datatypes.

[Data type]qsmm_sig_t
This is an unsigned integer datatype for storing signal identifiers and the numbers of signals.
The set of allowed values for this datatype is the range 0 to QSMM_SIG_MAX+1 and the special
value QSMM_SIG_INVALID. The current implementation defines the datatype as unsigned

int.

In principle, a developer can define this datatype as a smaller unsigned integer type to
reduce memory consumption. Corresponding modification of definitions of qsmm_ssig_t

datatype and QSMM_SIG_MAX, QSMM_SIG_INVALID, QSMM_FMT_PRI_SIG, QSMM_FMT_PRI_SSIG,
and QSMM_FMT_SCN_SIG macros (see below) may be necessary. As of QSMM version 1.17, the
developer may not define this datatype as a larger unsigned integer type, because not all
package source code has been reworked to support such a type.

The values QSMM_SIG_MAX+1 and QSMM_SIG_INVALID must lie in the range
of allowed values of size_t type. This restriction means that the condition
“sizeof(qsmm_sig_t)<=sizeof(size_t)” holds true.

Chapter 1: Introduction 14

[Data type]qsmm_ssig_t
[New in QSMM 1.17] This is a signed integer datatype for storing signal identifiers and the
numbers of signals. The set of allowed values for this datatype is the range -(qsmm_ssig_t)
QSMM_SIG_MAX-1 to QSMM_SIG_MAX+1 and the special value QSMM_SIG_INVALID. The cur-
rent implementation defines the datatype as int. Specifics of defining this datatype as a
different signed integer type are the same as for the datatype qsmm_sig_t. The condition
“sizeof(qsmm_ssig_t)==sizeof(qsmm_sig_t)” must hold true.

Signal identifiers not only specify signals themselves but also other entities internally repre-
sented by signals. For example, the identifiers of nodes of a multinode model and their states
are signal identifiers.

Use the following macros when working with signal identifiers.

[Macro]QSMM_SIG_INVALID
Represents an invalid signal identifier. Use it as a substitute for the NULL value of a signal
identifier because identifier 0 is valid one. Historically, the macro expands to an unsigned
integer value. In QSMM version 1.18, the macro expands to ((1 << (sizeof(qsmm_sig_

t)*8-1))-0U).

[Macro]QSMM_SIG_MAX
This is the maximum allowed value of a signal identifier. Historically, the macro expands to
an unsigned integer value.

Consider two affirmations:

1. When an array contains information on signals with identifiers in the range 0 to QSMM_

SIG_MAX, the number of elements in the array is equal to QSMM_SIG_MAX+1.

2. When the upper bound of a range of signal identifiers is not inclusive, the range x to
QSMM_SIG_MAX has upper bound QSMM_SIG_MAX+1.

To make it possible to use the datatypes qsmm_sig_t and qsmm_ssig_t for specifying the
numbers of signals in the first case and signal ranges with not inclusive upper bounds in
the second case, those datatypes additionally support storing value QSMM_SIG_MAX+1. The
datatype qsmm_ssig_t additionally supports storing value -(qsmm_ssig_t) QSMM_SIG_MAX-

1. In QSMM version 1.18, the macro expands to ((1 << (sizeof(qsmm_sig_t)*8-1))-2U).

[Macro]QSMM_FMT_PRI_SIG
[New in QSMM 1.17] An optional length modifier and a conversion specifier in format strings
for functions similar to printf for printing values of qsmm_sig_t type. The macro expands
to ‘u’.

[Macro]QSMM_FMT_PRI_SSIG
[New in QSMM 1.17] An optional length modifier and a conversion specifier in format strings
for functions similar to printf for printing values of qsmm_ssig_t type. The macro expands
to ‘d’.

[Macro]QSMM_FMT_SCN_SIG
[New in QSMM 1.17] An optional length modifier and a conversion specifier in format strings
for functions similar to scanf for parsing values of qsmm_sig_t type. The macro expands to
‘u’.

A developer should use the aforementioned datatypes and macros to write source code sup-
porting easier adaptation for a smaller or larger number of possible signals. The source code
will also be better compatible with future versions of QSMM framework.

Chapter 1: Introduction 15

Below there is an example of using the datatype qsmm_sig_t and the macro QSMM_FMT_PRI_

SIG. The function print_sig_array prints an array of signal identifiers specified by a pointer
to the array and a number of its elements.

#include <stdio.h>

#include <qsmm/qsmm.h>

void

print_sig_array(

const qsmm_sig_t *sigp,

qsmm_sig_t nsig

) {

putchar(’[’);

for (qsmm_sig_t idx=0; idx<nsig; idx++) {

if (idx) fputs(", ",stdout);

printf("%" QSMM_FMT_PRI_SIG,sigp[idx]);

}

puts("]");

}

1.10.3 Object Handles

QSMM uses handles for referencing various objects visible to an application program. A handle
is an opaque typed pointer to a QSMM internal structure. The application program cannot
examine or change its content other than by calling API functions that take a handle of this
type as an argument. The type of a handle corresponds to the type of an object referenced by
the handle. Dereferencing handles does not make sense as they have incomplete types. Because
a handle is a pointer, it can have the NULL value.

The table below lists handle types used in QSMM. For each handle type, the table indicates a
corresponding object type and a reference to a section in this manual with a detailed description
of that handle type.

Handle type Object type Reference to a section in this manual

qsmm_t multinode model Section 4.2 [Creating a Multinode Model],
page 108.

qsmm_actor_t actor Section 2.4 [Creating an Actor], page 27.

qsmm_actpair_t actor pair Section 4.2.6 [Creating the Model Instance],
page 143.

qsmm_instr_t assembler instruction Section 5.1 [Basic Datatypes for Assembler
Programs], page 179.

qsmm_iter_t map iterator Part of C implementation of functionality
of STL map and multimap templates. See
Section 6.5.1 [Creating Maps and Iterators],
page 262.

Chapter 1: Introduction 16

qsmm_map_t map Part of C implementation of functionality
of STL map and multimap templates. See
Section 6.5.1 [Creating Maps and Iterators],
page 262.

qsmm_msg_t message Section 6.3.1 [Creating Messages], page 252.

qsmm_msglist_t message list Section 6.3.2 [Creating a Message List],
page 254.

qsmm_prg_t assembler program Section 5.1 [Basic Datatypes for Assembler
Programs], page 179.

qsmm_rng_t random number generator Section 6.1.1 [Creating a Random Number
Generator], page 245.

qsmm_side_t interaction side Part of Side API. See Section 6.4.1 [Regis-
tering Interaction Sides], page 259.

qsmm_storage_t statistics storage Section 3.1 [Storage Types], page 78.

qsmm_vec_t vector Section 6.2 [Ordinary and Sparse Vectors],
page 250.

Note: It is generally acceptable to call API functions for different handles in different
threads of a multithreaded program concurrently on condition that those handles
do not reference interrelated objects (e.g. when an object is a component of another
object). Calling API functions for the same handle (in different threads of a multi-
threaded program concurrently) is not thread-safe except for the Side API intended
for communication between threads.

The following enumeration specifies possible handle types.

[Enumeration]qsmm_handle_e
This enumeration lists supported types of object handles. The enumeration contains the
following elements.

QSMM_HANDLE_INVALID

A special value designating an invalid, unknown, or NULL object handle type.

QSMM_HANDLE_MODEL

A multinode model handle. It has the type qsmm_t.

QSMM_HANDLE_ACTOR

An actor handle. It has the type qsmm_actor_t.

QSMM_HANDLE_ACTPAIR

An actor pair handle. It has the type qsmm_actpair_t.

QSMM_HANDLE_INSTR

An assembler instruction handle. It has the type qsmm_instr_t.

QSMM_HANDLE_ITER

A key-value map iterator handle. It has the type qsmm_iter_t.

QSMM_HANDLE_MAP

A key-value map handle. It has the type qsmm_map_t.

Chapter 1: Introduction 17

QSMM_HANDLE_MSG

An error, warning, note, or uncategorized message handle. It has the type qsmm_
msg_t.

QSMM_HANDLE_MSGLIST

A handle of a list of error, warning, note, or uncategorized messages. The handle
has the type qsmm_msglist_t.

QSMM_HANDLE_PRG

An assembler program handle. It has the type qsmm_prg_t.

QSMM_HANDLE_RNG

A random number generator handle. It has the type qsmm_rng_t.

QSMM_HANDLE_SIDE

An interaction side handle. It has the type qsmm_side_t.

QSMM_HANDLE_STORAGE

A statistics storage instance handle. It has the type qsmm_storage_t.

QSMM_HANDLE_VEC

A handle of an ordinary or sparse vector. The handle has the type qsmm_vec_t.

QSMM_HANDLE_COUNT

The number of elements in the enumeration excluding this element.

The following union represents a handle of a specific or generic type.

[Union]qsmm_handle_u
This union represents one of typed object handles or an untyped object handle. The union
contains the following fields.

[Field]qsmm_t qsmm
A multinode model handle.

[Field]qsmm_actor_t actor
An actor handle.

[Field]qsmm_actpair_t actpair
An actor pair handle.

[Field]qsmm_instr_t instr
An assembler instruction handle.

[Field]qsmm_iter_t iter
A key-value map iterator handle.

[Field]qsmm_map_t map
A key-value map handle.

[Field]qsmm_msg_t msg
An error, warning, note, or uncategorized message handle.

[Field]qsmm_msglist_t msglist
A handle of a list of error, warning, note, or uncategorized messages.

[Field]qsmm_prg_t prg
An assembler program handle.

Chapter 1: Introduction 18

[Field]qsmm_rng_t rng
A random number generator handle.

[Field]qsmm_side_t side
An interaction side handle.

[Field]qsmm_storage_t storage
A statistics storage instance handle.

[Field]qsmm_vec_t vec
A handle of an ordinary or sparse vector.

[Field]void * raw_p
An untyped object handle.

The following structure holds the type of a handle along with its value.

[Structure]qsmm_handle_s
This structure holds the type of an object handle and its value. The structure contains the
following fields.

[Field]enum qsmm_handle_e type
An object handle type.

[Field]union qsmm_handle_u val
An object handle value corresponding to an object handle type in the field type.

1.10.4 Error Handling

If an API function returns a value of int type, then a negative return value is an error code. Zero
and positive return values indicate additional information regarding a successful completion of
a function call.

If an API function does not return a value of int type, the function may not return an error
code, because error condition cannot arise within the function, or, at least, because there was
such assumption when the function first appeared in the API.

If not otherwise noted in the description of an error code of an API function, returning the
error code by the function means that the state of QSMM framework remained unchanged, that
is, just after calling the function, the framework retained its state it had just before calling the
function.

Use the following API function from the header file err.h (included in qsmm.h) to get the
text description of an error code.

[Function]const char * qsmm_err_str (int err)
This function returns the text description of API error code err. For invalid error codes, the
function returns ‘?’.

When you are creating a multinode model, you can associate an error handler with the model.
In this case, the error handler may receive extended information about an error occurred. The
use of an error handler may eliminate the need to check the return codes of calls to API functions
that have an argument of qsmm_t type to determine whether or not those functions succeeded.
See Section 4.5 [Error Handling for a Multinode Model], page 172, for information on using error
handlers.

Chapter 1: Introduction 19

1.10.5 Getting Library Version

Currently, the version of a QSMM library hasmajor.minor format. In the future, a QSMM library
with a greater major version may have considerable backward-incompatible changes to the API.
That is, upgrading existing applications to support versions with a greater major number may
require considerable changes to the source code of those applications.

Getting a string representation of library version. Use the following API function from the
header file qsmm.h:

[Function]const char * qsmm_version ()
This function returns the version of a QSMM library as a string in major.minor format (e.g.
‘1.18’).

Getting a string representation of the version of library header files. Use the following macro
from the header file version.h (included in qsmm.h):

[Macro]QSMM_HEADERS_VERSION
This macro expands to a string representation of the version of installed header files of a
QSMM library (e.g. to ‘1.18’). A C program that uses the library includes the header files.
The version of those header files should be equal to the version of a QSMM library used when
linking the program. See Section 1.10.1 [Header Files], page 12, for more information about
the header files of QSMM library.

1.11 Linking with the Library

The QSMM library may have dependencies on other libraries. The configure script executed
at the package configuring phase defines those dependencies. For a shared version of QSMM

library, the shared library file has those dependencies included in it. You do not need to specify
them in a link command:

gcc example.o -L/usr/local/lib -lqsmm

(If the library resides in the directory /usr/local/lib/, and that directory is not on the stan-
dard linker search path, use the option -L/usr/local/lib.)

To link with a static version of QSMM library, you need to specify libraries it depends on in
a link command. For this, use linker options -l, such as -lgsl and -lm. The following example
command produces a fully statically linked executable:

gcc -static example.o -lqsmm -lgsl -lm

Alternatively, you can link using the libtool program. This program will use the file
libqsmm.la copied to the library directory when installing the package. That file describes all
dependencies required to produce an executable linked against the QSMM library. The libtool
program simplifies static linking.

1.12 Conventions for Datatypes

The names of all datatypes declared in the QSMM public header files and its source code are in
lowercase. The suffixes of those names correspond to C language keywords used for datatype
declarations:

typedef The ‘_t’ suffix. The names of datatypes for function pointers have the ‘_func_t’
suffix.

enum The ‘_e’ suffix.

struct The ‘_s’ suffix.

union The ‘_u’ suffix.

Chapter 1: Introduction 20

The names of all datatypes declared in the QSMM public header files have the ‘qsmm_’ prefix.

QSMM has conventions for the use of basic C language types and the types size_t, qsmm_
sig_t, and qsmm_ssig_t in various situations. The API and the package source code itself1

follow these conventions. C programs using QSMM may also follow them.

The primary conventions are that if a datatype holds signal identifiers or the numbers of
signals, and such values

– never lie outside the range 0 to 32767, then you can use the type qsmm_sig_t;

– may be negative but never lie outside the range −32768 to 32767, then you can use the type
qsmm_ssig_t;

– are non-negative and may exceed 32767, then you should use the type qsmm_sig_t;

– may be negative and may lie outside the range −32768 to 32767, then you should use the
type qsmm_ssig_t.

The secondary convention is that for sizes of memory arrays and for non-negative indices of
their elements allowed to be greater than 32767, you should use the type size_t.

For other situations, including situations when you choose not to use the type qsmm_sig_t

or qsmm_ssig_t according to the first two items of primary conventions stated above, the rules
are:

1. For boolean flags, use the type char or int or use specific bits in values of other numeric
types.

2. For integer quantities that never lie outside the range 0 to 127, use the type char or int.

3. For integer quantities that may be negative but never lie outside the range −128 to 127,
use the type signed char or int.

4. For non-negative integer quantities that may exceed 127 but never exceed 255, use the type
unsigned char or int.

5. For integer quantities that may be less than −128 but never lie outside the range −32768
to 32767, use the type int.

6. For integer quantities that may exceed 255 but never lie outside the range −32768 to 32767,
use the type int.

7. For non-negative integer quantities that may exceed 32767 but never exceed 65535, use the
type unsigned int.

8. For non-negative integer quantities that may exceed 65535 but do not have the restriction
that they must be at least 64-bit, use the type long or unsigned long.

9. For integer quantities that may be less than −32768 and may be greater than 32767 but do
not have the restriction that they must be at least 64-bit, use the type long.

10. For integer quantities that must be at least 64-bit, use the type long long or unsigned

long long.

For example, in QSMM:

– the type char holds unpacked boolean flags;

– the type int holds error codes and indices of spur types;

– the type long holds frequencies and moments of discrete time.

The set of datatypes declared in the API with the ‘_t’ suffix in their names includes the
datatypes qsmm_sig_t and qsmm_ssig_t, datatypes for function pointers with the ‘_func_t’
suffix, and datatypes for object handles. See Section 1.10.3 [Object Handles], page 15, for more
information about datatypes for object handles.

1 As of QSMM version 1.17, not all package source code is yet reworked to follow these conventions.

21

Datatypes declared in the API with the ‘_e’ suffix in their names are enumerations. Elements
of enumerations are in uppercase.

Datatypes with the suffixes ‘_s’ and ‘_u’ are structures and unions respectively. The order
of their fields depends on the datatypes of those fields and is the following:

1. Fields of basic types (except for pointers of void type). The type order is the following:
char, signed char, unsigned char, short, unsigned short, int, unsigned int, long,
unsigned long, long long, unsigned long long, float, double, long double.

2. Fields of types declared in QSMM with the ‘_t’ suffix in their names.

3. Fields of other types, except for types with names following the specifier ‘enum’, ‘struct’,
or ‘union’.

4. Fields of types with names following the specifier ‘enum’. Enumerations declared in QSMM

go first.

5. Fields of types with names following the specifier ‘struct’. Structures declared in QSMM

go first.

6. Fields of types with names following the specifier ‘union’. Unions declared in QSMM go
first.

7. Fields with pointers of void type.

For every type name within each type category listed above, the type order is the following:

1. Non-pointer and non-array types (not applicable to the void type).

2. Arrays (but not pointers to arrays), including arrays of pointers.

3. Pointer types (except for arrays of pointers) with full names beginning with the const

qualifier in the order of increasing the number of asterisks.

4. Pointer types (except for arrays of pointers) with full names that do not begin with the
const qualifier in the order of increasing the number of asterisks.

22

2 Adaptive Probabilistic Mapping

An adaptive probabilistic mapping1 or actor interacts with an application program or envi-
ronment by means of exchanging signals. The input and output signals of the actor can be
the arguments of the adaptive probabilistic mapping. The output signals2 of the actor are the
outcomes of the adaptive probabilistic mapping.

The actor ordinarily receives the input signals, spur (see Section 1.2 [Spur-driven Behavior],
page 3) increments, and time increments and emits the output signals with the goal to maximize
spur increment or decrement velocity. To achieve that goal, the actor performs basic forecasting
of spur increments resulting from emitting various output signals. The author assumes that
by combining multiple actors or applying other approaches it is possible to amplify this fore-
casting capability to create a system intelligently interacting with an environment of real-world
complexity.

2.1 Event History

Occurrences of input and output signals of an actor with particular moments of time when those
occurrences took place is the event history of the actor.

An example event history along with changing spur values represented as a two-dimensional
chart is in Figure 2.1.

Figure 2.1: an event history example as a two-dimensional chart

In the chart, filled dots denote events of receiving input signals, and unfilled dots denote
events of emitting output signals. Every such event is on a horizontal line denoting a particular
input or output signal with an identifier printed after the line end. In QSMM 1.18, a set of input
signal identifiers and a set of output signal identifiers ordinarily do not overlap. Every input
signal and its corresponding output signal connected by an arrow are on the same vertical line,
as the API does not specify the time between receiving an input signal and emitting an output
signal by an actor. A plot of single spur value change over time is above the event history.

A fragment of this two-dimensional chart in gray represented as a one-dimensional plot is in
Figure 2.2.

1 The old term for “adaptive probabilistic mapping” used before QSMM 1.17 was “optimal action generation
engine”.

2 A deprecated synonym for the term “output signal” used before QSMM 1.17 was “action signal”.

Chapter 2: Adaptive Probabilistic Mapping 23

Figure 2.2: an event history fragment as a one-dimensional plot

We may assume that every event of receiving an input signal encodes an event of receiving a
tuple of signals. Identifiers assigned to unique tuples would be input signal identifiers.

For example, we can replace every input signal with a triple of signals. The event history
fragment with input signals replaced with triples of signals is in Figure 2.3.

Figure 2.3: tuples of signals as input signals

In this figure, input signal 3 has encoded triple <3, 0, 4>, input signal 5 has encoded triple
<1, 2, 5>, and input signal 0 has encoded triple <5, 3, 3>.

In this way, by setting one-to-one correspondence between single-value arguments of a proba-
bilistic mapping and n-value tuples, we convert the mapping to an n-ary probabilistic mapping.

By including the previous outcome of a probabilistic mapping in its next n-ary argument, we
convert a stateless probabilistic mapping to a stateful mapping—an outcome of a probabilistic
mapping becomes its state; in this way, the probabilistic mapping can model a finite automaton.
After this conversion, input signal 5 encodes quadruple <21, 1, 2, 5>, and input signal 0 encodes
quadruple <19, 5, 3, 3>.

An n-ary argument of an adaptive probabilistic mapping is an action choice state of an actor.
An action choice state is an input list of events an actor shall respond to by choosing an action—
emitting an output signal. An action choice state might be a guessed or known current system
or environment state that requires generating an adaptive action.

In the past, action choice states were meant to be n-grams of events from an event history.
The current view is that action choice states are not necessarily n-grams, but the terminology
remains the same for compatibility. An action choice state n-gram is a signal identifier list that
encodes an action choice state. The tuples <3, 0, 4>, <1, 2, 5>, <5, 3, 3>, <21, 1, 2, 5>, and <19,
5, 3, 3> are action choice state n-grams used to select output signals 21, 19, and 17.

2.2 Output Signal Selection

An actor emits output signals stochastically according to their probabilities it calculates. The
actor collects statistics on observed consequences of emitting various output signals in various
action choice states. It treats such observed consequences as dependent only on a specific action
choice state and a specific output signal emitted in the action choice state. An event history
segment for observing the consequences is a cycle—a segment between an occurrence of that
action choice state in the event history and the next occurrence of that action choice state in the
event history. The actor uses the collected statistics to calculate the probabilities of emitting
allowed output signals in a current action choice state.

Chapter 2: Adaptive Probabilistic Mapping 24

For every occurrence of an action choice state in the event history, the actor updates statistics
on a cycle type—the pair comprised of this action choice state and an output signal emitted at
the previous occurrence of this action choice state in the event history. The actor updates the
statistics with the following parameters:

– spur increment between the previous occurrence of an action choice state and its current
occurrence;

– time increment between the previous occurrence of an action choice state and its current
occurrence;

– number of output signals emitted between the previous occurrence of an action choice state
and its current occurrence;

– number of times the actor emitted the output signal in the action choice state.

The actor calculates the probabilities of output signals to emit in a current action choice state
using statistics collected for pairs comprised of this action choice state and each allowed output
signal. Such statistics includes the following parameters for event history segments between an
occurrence of this action choice state with emitting the output signal and the next occurrence
of this action choice state:

– sum of spur increments over the segments;

– total time length of the segments;

– mean number of output signals emitted in the segments.

Using the sum of spur increments over the segments and the total time length of those
segments, the actor can calculate the mean velocity of spur increment over the segments. The
higher the mean spur increment velocity is for segments specified by the pair comprised of an
action choice state and an output signal, the greater the probability of emitting the output
signal in the action choice state can be.

Let us consider a simplistic example. Suppose the actor has recorded that emitting output
signal 18 in an action choice state concluded with spur increment +7 over a period of 40 time
units until the action choice state occurred the next time in the event history. Suppose the
actor has also recorded that emitting output signal 19 at a different occurrence of this action
choice state concluded with spur increment +6 over a period of 30 time units until the action
choice state occurred again in the event history. Therefore, when emitting next output signal
in this action choice state, the actor will select signal 19 with higher probability than signal 18
because spur increment velocity 6/30 for signal 19 is greater than spur increment velocity 7/40
for signal 18. When the actor emits the same output signal in the same action choice state more
than once, it accumulates the statistics and uses mean spur increment velocity to calculate the
probability of emitting an output signal.

In QSMM, the actor uses a more complex method of selecting an output signal, so the above
example is a simplification that does not fully agree with practice. See Section 2.6 [Customizing
the Relative Probability Function], page 48, for more information about available and user-
defined functions utilizing various kinds of statistics to calculate the probability of emitting an
output signal.

To improve reaction to latest tendencies in the event history, the actor may remember statis-
tics for time periods shorter than the entire event history.

2.3 Small and Large Actors

The most time-consuming operation frequently performed by an actor is adaptive emitting an
output signal. The only actor type implemented before QSMM 1.15 was small actor. A small
actor performs the operation of adaptive emitting an output signal in the following steps:

1. The actor calculates the relative probabilities of all output signals.

Chapter 2: Adaptive Probabilistic Mapping 25

2. The actor stochastically selects an output signal according to those relative probabilities
using a random number generator.

From the standpoint of computer implementation, the most time-consuming is the first step
when the actor calculates the relative probabilities of all output signals. For example, to adap-
tively select an output signal from a set of 16 output signals, the small actor has to perform 16
evaluations of a relative probability function. Figure 2.4 illustrates this situation.

Figure 2.4: emitting an output signal in an action choice state of a small actor

The time necessary to complete the sequential execution of this calculation process is the
sum of time periods needed for calculating the value of a relative probability function for every
output signal. While calculating every such value can be time-expensive on its own on account
of performing many arithmetic operations, fetching their input values from statistics storage can
add significant time overhead to the calculation process.

To speed up selecting output signals by an actor, QSMM 1.15 introduces the concept of large
actor. If the weights (or the relative profile probabilities) of output signals of a large actor are
equal, the number of relative probability function evaluations performed by the large actor is
not equal to the number of its output signals but is approximately equal to the product of the
logarithm of that number and a logarithm base. Large actors provide fast selection of an output
signal when the number of output signals is large or even huge; the only limitation is the amount
of memory available for storing the control structures of a large actor.

The adaptivity of behavior of a large actor (as well as small one) depends on a relative prob-
ability function used, that is, on a function that returns the relative probability of selecting a
signal. The default function used by a large actor can provide moderate efficiency in solving
certain kinds of problems, for example, the identification of a current environment state. Devel-
opers unsatisfied with results produced using that function can provide a custom function via
corresponding API calls.

A large actor performs fast stochastic selection of output signals by using trees containing
nodes controlled by a small actor. The following entities correspond to every tree node:

1. An action choice state: either root one or intermediate one. The root action choice state is
the current action choice state of the large actor; it selects an output signal for that state.

2. A small array of relative probabilities of output signals (this array typically contains a few
elements). Those output signals are either output signals of the large actor or intermediate
output signals. To every intermediate output signal there corresponds an intermediate
action choice state located at a deeper hierarchy level.

Figure 2.5 illustrates this tree structure. Indexed letters “s” denote intermediate action choice
states, and indexed letters “a” denote intermediate output signals.

Chapter 2: Adaptive Probabilistic Mapping 26

Figure 2.5: emitting an output signal in an action choice state of a large actor

A large actor performs the operation of adaptive emitting an output signal by the following
algorithm:

1. Assign: current intermediate action choice state = the current action choice state of the
large actor.

2. Adaptively generate an output signal for the current intermediate action choice state by a
small actor associated with the large actor. This operation requires calculating the relative
probabilities of all output signals (typically a few ones) for the current intermediate action
choice state.

3. An output signal generated in step 2 can be either an intermediate output signal or an
output signal of the large actor. If the output signal is the one of the large actor, then
finish.

4. Change the current intermediate action choice state to an intermediate action choice state
corresponding to the intermediate output signal and go to step 2.

Thus, using a tree represented in Figure 2.5, the adaptive selection of an output signal from a
set of 16 output signals requires only 8 evaluations of a function returning the relative probability
of a signal. A taller binary tree would provide the adaptive selection of an output signal from a
set of 256 output signals using 16 evaluations of the function.

The structure of the tree affects the weights of output signals of a large actor and the speed
of emitting those signals by the large actor. Large actors use n-ary Huffman trees to adaptively
generate output signals. Using a Huffman tree built for a specific list of output signal weights,
emitting output signals with greater weights requires the same or a smaller number of relative
probability function evaluations compared to emitting output signals with lesser weights.

Chapter 2: Adaptive Probabilistic Mapping 27

Although having much the same API, small and large actors are not fully interchangeable.
There are specifics of using actors of every type.

2.4 Creating an Actor

An actor handle refers to a small or large actor.

[Data type]qsmm_actor_t
This is a type for an actor handle. It is a pointer, so variables of this type can be NULL.
The function qsmm_actor_create creates a new actor and returns its handle. The function
qsmm_actor_destroy destroys an existing actor addressed by a handle. You can pass an
actor handle to API functions taking an argument of qsmm_actor_t type after the creation
of an actor and until its destruction.

Use the following functions to create and destroy an actor.

[Function]int qsmm_actor_create (const struct qsmm actor desc s *desc_p,
qsmm actor t *actor_p)

This function creates an actor using parameters in *desc p and stores an actor handle in
*actor p.

If actor p is NULL, the function only validates the parameters in *desc p.

The function returns a non-negative value on success or a negative error code on failure in
creating an actor. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

Parameters in *desc p are invalid.

QSMM_ERR_NOMEM

There was not enough memory to create an actor.

QSMM_ERR_BIGMDL

A non-NULL field large_desc_p in *desc p specified to create a large actor, but its
multinode model would be too complex. See Section 4.2.6 [Creating the Model
Instance], page 143, for a description of QSMM_ERR_BIGMDL error the function
qsmm_engine_create can report on creating a multinode model instance thereby
causing the function qsmm_actor_create to return this error code.

[Function]void qsmm_actor_destroy (qsmm actor t actor)
This function destroys an actor specified by handle actor. You must not use the actor handle
after the actor destruction. If actor is NULL, the function has no effect.

Below there are a description of a structure passed in *desc p to the function qsmm_actor_

create and descriptions of a related datatype, a union, and enclosed structures.

[Structure]qsmm_actor_desc_s
This structure describes parameters for creating an actor by the function qsmm_actor_

create. The structure contains the following fields.

[Field]char use_flat_storage
A flag specifying the type of storage the actor will use for collecting statistics on the event
history. If this field is non-zero, and the field large_desc_p is NULL, then the actor will
use flat storage. If this field is non-zero, and the field large_desc_p is non-NULL, then the
function qsmm_actor_create will report QSMM_ERR_INVAL. If this field is zero, then the
actor will use map storage.

Flat storage is preallocated storage presumably of large size but with fast access to data
elements. Map storage is dynamically allocated storage presumably of smaller size but

Chapter 2: Adaptive Probabilistic Mapping 28

with slower access to data elements; map storage uses sorted maps for backing storage.
See Section 3.1 [Storage Types], page 78, for additional information on statistics storage
types.

[Field]int nspur
The number of spur types the actor will use. That number must be greater than 0. If the
actor is the large one, then a small actor associated with the large actor will use 1+nspur
spur types, where an implicitly added spur type with the lowest index corresponds to the
automatic spur of the small actor. See Section 2.8 [Automatic Spur], page 63, for more
information on that spur.

[Field]int ngram_sz
The length of a list of signal identifiers encoding an action choice state. That length must
be greater than 0. The longer the list is the more events in the event history the actor
typically needs for training.

[Field]int profile_pool_sz
Non-negative size of the pool of probabilities lists in normal form. The function qsmm_

actor_profile_add adds a unique probabilities list in normal form to that pool. The
function qsmm_set_actor_ngram_profile sets the added probabilities list for a particular
action choice state n-gram.

For a small actor, the size of the pool of probabilities lists in normal form is the maximum
number of unique sorted lists of normalized output signal weights (profile probabilities)
the actor can store in its memory.

For a large actor, that size is the maximum number of Huffman trees of unique structure the
actor can store in its memory, not counting an automatically created default Huffman tree
corresponding to the case when the weights of all output signals are equal. To determine
whether or not a Huffman tree is unique, the actor creates a temporary Huffman tree to
compare the probabilities of its leaves with the probabilities of leaves of previously stored
Huffman trees. That is why the value of this field should generally be greater by 1 than
the number of Huffman trees of unique structure required to represent the sorted lists of
output signal weights.

[Field]int compat
The compatibility level of algorithms used by the actor. That level must be 0, 1, or 2.
Value 0 means to use original algorithms implemented before QSMM 1.15. Value 1 means
to use enhanced algorithms:

– use a simpler formula for automatic spur increment;

– in formulas for computing the relative probability of an output signal, addition-
ally multiply mean discrete cycle period by a value returned by the function qsmm_

get_actor_naction_per_evt and, if the relative probability function type is QSMM_
RELPROB_BUILTIN1, by 2.

Value 2 further improves the algorithms:

– calculate output signal probabilities of QSMM_PROB_FQ type by the function qsmm_

actor_calc_action_prob based on exact (not sometimes decremented by 1) fre-
quencies of output signals in the event history;

– for a small actor, make the function qsmm_get_actor_sig_action select a signal
without using a random number generator (i.e. deterministically) if the signal is the
only one signal with a positive relative probability.

Set this field to 2 in your new programs. This manual does not include outdated details
specific to the original algorithms.

Chapter 2: Adaptive Probabilistic Mapping 29

[Field]double sparse_fill_max
Maximum fill ratio for sparse vectors holding the relative probabilities of output signals.
The actor chooses whether to use sparse vectors or ordinary vectors based on this ratio.
It must be a number in the range 0 to 1 inclusive. Value 0 indicates that the actor must
always use ordinary vectors. Value 1 indicates that the actor must always use sparse
vectors. A value between 0 and 1 indicates the maximum percentage (divided by 100) of
non-zero elements in sparse vectors relative to the numbers of vector dimensions.

Note: when creating a large actor (the field large_desc_p is not NULL in
this case), forgetting to set the field sparse_fill_max to a positive value, for
example, 0.2 or 1, will cause bad actor performance.

[Field]qsmm_rng_t rng
The handle of a random number generator the actor will use. See Section 6.1 [Random
Number Generators], page 245, for how to create and destroy random number generators
and perform other operations on them. If this field is NULL, the function qsmm_actor_

create creates an instance of default random number generator for use by the actor until
its destruction.

[Field]enum qsmm_actor_sig_spec_e sig_spec_type
The type of a specification of the number and directions of signals used by the actor. Here
“signal direction” means whether a signal is input one, output one, or belongs to both
types.

Value QSMM_ACTOR_SIG_SPEC_IN_OUT indicates that the field sig_spec of this structure
specifies the number of input signals and the number of output signals.

Value QSMM_ACTOR_SIG_SPEC_MASK indicates that the field sig_spec of this structure
specifies the total number of signals and a mask describing the directions of those signals.

[Field]union qsmm_actor_sig_spec_u sig_spec
A specification of the number and directions of signals used by the actor.

If the field sig_spec_type of this structure has value QSMM_ACTOR_SIG_SPEC_IN_OUT,
then sig_spec.in_out must contain the specification.

If the field sig_spec_type of this structure has value QSMM_ACTOR_SIG_SPEC_MASK, then
sig_spec.mask must contain the specification.

[Field]struct qsmm_pair_sig_s * range_sig_p
The ranges of signal identifiers in a list encoding an action choice state. The field ngram_

sz of this structure specifies the length of this list. The actor uses those ranges to check
the validity of a list of signal identifiers encoding a current action choice state in various
API functions, to reduce the memory footprint of flat storage if a small actor uses this type
of storage, and to reduce the number of nodes in the multinode model of a large actor.
There can be other uses for the ranges in future QSMM versions. Specify the ranges as
precisely as possible to reduce the memory footprint of the actor.

If the field range_sig_p is not NULL, then this field must be the pointer to an array
of ngram_sz elements, where each element is a pair. Those elements correspond to the
positions of signal identifiers in a list encoding an action choice state. The fields first and
second of each pair define the minimum value and the maximum value of a corresponding
signal identifier. The value of first must be less than or equal to the value of second.
The value of second must be less than the total number of signals of the actor specified
using the fields sig_spec_type and sig_spec of this structure. If range_sig_p is NULL,
this condition means that every signal in the list lies in the range 0 (inclusive) to the total
number (exclusive) of signals of the actor.

Chapter 2: Adaptive Probabilistic Mapping 30

[Field]struct qsmm_actor_large_desc_s * large_desc_p
The parameters of a large actor. A non-NULL value of this field indicates to create a large
actor.

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_actor_desc_s structure before setting the fields of this instance passed to
the function qsmm_actor_create.

[Enumeration]qsmm_actor_sig_spec_e
This enumeration defines a method of specification of the number and directions of signals of
an actor in the field sig_spec of qsmm_actor_desc_s structure. The enumeration contains
the following elements.

QSMM_ACTOR_SIG_SPEC_IN_OUT

The actor has a specified number of input signals and a specified number of
output signals. A segment of output signal identifiers follows a segment of input
signal identifiers. For example, if the actor has 6 input signals and 4 output
signals, then signals 0, 1, 2, 3, 4, 5 will be input ones, and signals 6, 7, 8, 9 will
be output ones. The field sig_spec.in_out of qsmm_actor_desc_s structure
should contain the number of input and output signals.

QSMM_ACTOR_SIG_SPEC_MASK

The actor has a specified total number of signals. Every signal can be input one.
A mask specifies a subset of output signals among those signals. The field sig_

spec.mask of qsmm_actor_desc_s structure should contain the total number of
signals and the mask.

[Union]qsmm_actor_sig_spec_u
This union describes in two possible forms the number and directions of signals of an actor.
The field sig_spec of qsmm_actor_desc_s structure holds that information. The union
contains the following fields.

[Field]struct qsmm_actor_sig_spec_in_out_s in_out
The number of input signals and the number of output signals. The field sig_spec_type

of qsmm_actor_desc_s structure should be equal to QSMM_ACTOR_SIG_SPEC_IN_OUT.

[Field]struct qsmm_actor_sig_spec_mask_s mask
The total number of signals and a subset of output signals. The field sig_spec_type of
qsmm_actor_desc_s structure should be equal to QSMM_ACTOR_SIG_SPEC_MASK.

[Structure]qsmm_actor_sig_spec_in_out_s
This structure specifies the number of input signals and the number of output signals of an
actor. The structure contains the following fields.

[Field]int nsig_in
The number of input signals of the actor. That number must be greater than 0.

[Field]int nsig_out
The number of output signals of the actor. That number must be greater than 1.

The sum of values in the fields nsig_in and nsig_out must be less than or equal to QSMM_

SIG_MAX+1.

[Structure]qsmm_actor_sig_spec_mask_s
This structure specifies the total number of signals and a subset of output signals of an actor.
The structure contains the following fields.

Chapter 2: Adaptive Probabilistic Mapping 31

[Field]char * is_sig_out_p
If this field is NULL, then all actor signals will be output ones; some or all of those signals
can be input ones. If this field is not NULL, then the field must contain the pointer to an
array of nsig (see the next field) elements. A zero element indicates that a signal with
the identifier equal to an element index is an input signal. A non-zero element indicates
that a signal with the identifier equal to an element index is an output signal and possibly
input one. The array must contain at least two non-zero elements. The function qsmm_

actor_create copies the array to an internal structure of the actor.

[Field]int nsig
The total number of signals of the actor. That number must be greater than 1 and less
than or equal to QSMM_SIG_MAX+1.

[Structure]qsmm_pair_sig_s
This structure holds a pair of signals, for example, a signal range. The structure contains the
following fields.

[Field]qsmm_sig_t first
The first element of the pair. If the pair represents a signal range, then the minimum
value of a signal identifier.

[Field]qsmm_sig_t second
The second element of the pair. If the pair represents a signal range, then the maximum
value of a signal identifier.

[Structure]qsmm_actor_large_desc_s
This structure specifies the parameters of a large actor. The structure contains only one field
but is a structure to simplify adding new parameters in future QSMM versions.

[Field]int tree_arity
The maximum number of child nodes of every node of Huffman trees for adaptive selection
of output signals by the large actor. That number must be greater than 1. You can use
value 2 in most cases. It is better to use the number of output signals of a large actor
equal to a positive integer power of the value of this field.

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_actor_large_desc_s structure before setting the value of tree_arity

field of this instance passed via the field large_desc_p of qsmm_actor_desc_s structure to the
function qsmm_actor_create.

Below there is sample source code for creating a small actor.

struct qsmm_actor_desc_s actor_desc;

memset(&actor_desc,0,sizeof(actor_desc));

actor_desc.nspur=1;

actor_desc.ngram_sz=3;

actor_desc.compat=2;

actor_desc.sig_spec_type=QSMM_ACTOR_SIG_SPEC_IN_OUT;

struct qsmm_actor_sig_spec_in_out_s *const io_p=

&actor_desc.sig_spec.in_out;

io_p->nsig_in=6;

io_p->nsig_out=4;

qsmm_actor_t actor=0;

const int rc=qsmm_actor_create(&actor_desc,&actor);

if (rc<0) fprintf(stderr,"qsmm_actor_create: %s\n",qsmm_err_str(rc));

Chapter 2: Adaptive Probabilistic Mapping 32

Below there is sample source code for creating a large actor.

struct qsmm_actor_desc_s actor_desc;

memset(&actor_desc,0,sizeof(actor_desc));

actor_desc.nspur=1;

actor_desc.ngram_sz=3;

actor_desc.compat=2;

actor_desc.sparse_fill_max=1;

actor_desc.sig_spec_type=QSMM_ACTOR_SIG_SPEC_IN_OUT;

struct qsmm_actor_sig_spec_in_out_s *const io_p=

&actor_desc.sig_spec.in_out;

io_p->nsig_in=6;

io_p->nsig_out=4096;

struct qsmm_pair_sig_s range_sig[3];

memset(&range_sig,0,sizeof(range_sig));

range_sig[0].second=5;

range_sig[1].second=5;

range_sig[2].second=5;

actor_desc.range_sig_p=range_sig;

// action choice state consists only of input signals of the actor

struct qsmm_actor_large_desc_s large_desc;

memset(&large_desc,0,sizeof(large_desc));

large_desc.tree_arity=2;

actor_desc.large_desc_p=&large_desc;

qsmm_actor_t actor=0;

const int rc=qsmm_actor_create(&actor_desc,&actor);

if (rc<0) fprintf(stderr,"qsmm_actor_create: %s\n",qsmm_err_str(rc));

You can obtain parameters specified when creating an actor later by the following functions.

[Function]int qsmm_get_actor_nspur (qsmm actor t actor)
This function returns a positive integer equal to the number of spur types used by actor.
The field nspur of qsmm_actor_desc_s structure passed to the function qsmm_actor_create

when creating the actor specifies that number.

[Function]int qsmm_get_actor_ngram_sz (qsmm actor t actor)
This function returns a positive integer number equal to the length of a list of signal identifiers
encoding an action choice state of actor. The field ngram_sz of qsmm_actor_desc_s structure
passed to the function qsmm_actor_create when creating the actor specifies that length.

[Function]int qsmm_get_actor_profile_pool_sz (qsmm actor t actor)
This function returns a non-negative integer number equal to the size of the pool of prob-
abilities lists in normal form of actor. The field profile_pool_sz of qsmm_actor_desc_s
structure passed to the function qsmm_actor_create when creating the actor specifies that
size.

[Function]int qsmm_get_actor_compat (qsmm actor t actor)
This function returns a non-negative integer number equal to the compatibility level of al-
gorithms used by actor. The field compat of qsmm_actor_desc_s structure passed to the
function qsmm_actor_create when creating the actor specifies that level.

[Function]int qsmm_get_actor_nsig (qsmm actor t actor)
This function returns a positive integer equal to the total number of signals of actor.

If the field sig_spec_type of qsmm_actor_desc_s structure passed to the function qsmm_

actor_create when creating the actor is equal to QSMM_ACTOR_SIG_SPEC_IN_OUT, the total

Chapter 2: Adaptive Probabilistic Mapping 33

number of signals is the sum of sig_spec.in_out.nsig_in and sig_spec.in_out.nsig_out

fields of qsmm_actor_desc_s structure.

If the field sig_spec_type is equal to QSMM_ACTOR_SIG_SPEC_MASK, the total number of
signals is the field sig_spec.mask.nsig of qsmm_actor_desc_s structure.

[Function]int qsmm_get_actor_nsig_out (qsmm actor t actor)
This function returns a positive integer equal to the number of output signals of actor.

If the field sig_spec_type of qsmm_actor_desc_s structure passed to the function qsmm_

actor_create when creating the actor is equal to QSMM_ACTOR_SIG_SPEC_IN_OUT, the num-
ber of output signals is the field sig_spec.in_out.nsig_out of qsmm_actor_desc_s struc-
ture.

If the field sig_spec_type is equal to QSMM_ACTOR_SIG_SPEC_MASK, the number of output
signals is the number of non-zero elements in the array sig_spec.mask.is_sig_out_p in the
structure qsmm_actor_desc_s.

[Function]double qsmm_get_actor_sparse_fill_max (qsmm actor t actor)
This function returns maximum fill ratio for sparse vectors holding the relative probabilities
of output signals. An actor chooses whether to use sparse vectors or ordinary vectors based
on this ratio. The field sparse_fill_max of qsmm_actor_desc_s structure passed to the
function qsmm_actor_create when creating the actor specifies this ratio.

[Function]const struct qsmm_pair_sig_s * qsmm_get_actor_range_sig
(qsmm actor t actor)

This function returns the pointer to an array in an internal structure of an actor describing
allowed ranges of signal identifiers in lists encoding its action choice states. The field range_

sig_p of qsmm_actor_desc_s structure passed to the function qsmm_actor_create when
creating the actor specifies the content of this array. The number of elements in the array is
equal to the length of a list of signal identifiers encoding an action choice state. The function
qsmm_get_actor_ngram_sz returns that length. The function qsmm_get_actor_range_sig

never returns NULL.

A datatype for the handle of statistics storage is qsmm_storage_t. You can obtain the handle
of statistics storage of an actor by the following function.

[Function]qsmm_storage_t qsmm_get_actor_storage (qsmm actor t actor)
This function returns the handle of storage used by actor for collecting statistics on the event
history. If the actor is the large one, the storage contains only part of that statistics. Huffman
trees within the multinode model of that large actor hold the other part of that statistics.
This function never returns NULL.

A datatype for the multinode model of a large actor is qsmm_t. You can obtain the handle
of the multinode model of an actor by the following function.

[Function]qsmm_t qsmm_get_actor_large_model (qsmm actor t actor)
This function returns the handle of a multinode model used by a large actor to adaptively
emit output signals. If actor is a large actor, the function returns a non-NULL handle. If actor
is a small actor, the function returns NULL. You can use this function to determine whether
an actor is large or small one.

2.5 Repeated Sequence of Operations

After the creation of an actor and until its destruction, a repeated sequence of operations is re-
ceiving a tuple of input signals followed by emitting an output signal. Any number of operations
of incrementing spur and incrementing time can precede or follow those two operations.

Chapter 2: Adaptive Probabilistic Mapping 34

2.5.1 Incrementing Spur

An actor selects output signals adaptively according to spur increments supplied to it along
with input signals. Those spur increments are indirect and probabilistic assessment of efficiency
of output signal selection. An output signal selected does not have one-to-one correspondence
with a spur increment followed—an arbitrary number of output signals selected can cause an
arbitrary number of spur increments followed in arbitrary delays.

Each spur increment is an increment of spur of a specific type. See Section 1.2 [Spur-driven
Behavior], page 3, for the definitions of spur and spur type.

The function qsmm_actor_create sets the number of spur types for an actor. Every spur
type definition has the following parameters: a way of spur perception, spur weight, and a type
of time for computing spur increment velocity. A list of spur type definitions along with the
methods of performing spur increments specify the spur scheme of an actor.

Use the following function to increment the value of spur of a specific type.

[Function]int qsmm_actor_spur_delta (qsmm actor t actor, int spur_type,
double spur_delta)

This function increments by spur delta the value of spur of spur type type an actor has been
accumulating. Spur types have zero-based indices. Special spur type −1 of a large actor
corresponds to the automatic spur of a small actor associated with the large actor. The value
of spur delta can be negative.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

One of the following conditions is true:

– the actor is the small one, and spur type is negative;

– the actor is the large one, and spur type is less than −1;
– spur type is greater than or equal to the number of spur types specified in

the field nspur of qsmm_actor_desc_s structure when creating the actor;

– spur delta is non-finite.

QSMM_ERR_INFIN

The incremented spur value would be infinite.

Use the following function to get the current value of spur of a specific type.

[Function]int qsmm_get_actor_spur (qsmm actor t actor, int spur_type, double
*spur_p)

This function sets *spur p equal to the current value of spur of spur type type an actor has
been accumulating. Spur types have zero-based indices. Special spur type −1 of a large actor
corresponds to the automatic spur of a small actor associated with the large actor. If spur p
is NULL, the function does not set *spur p. Otherwise, *spur p is finite.

On success, the function returns a non-negative value. If the actor is the small one and
spur type is negative, or if the actor is the large one and spur type is less than −1, or if
spur type is greater than or equal to the number of spur types specified in the field nspur of
qsmm_actor_desc_s structure when creating the actor, the function returns negative error
code QSMM_ERR_INVAL.

2.5.2 Incrementing Time

There are two types of time associated with an actor: discrete time and continuous time.

The actor uses discrete time to calculate the number of output signals emitted within an
event history segment. The functions qsmm_actor_shl_sig, qsmm_actor_reg_sig_in, and

Chapter 2: Adaptive Probabilistic Mapping 35

qsmm_actor_reg_sig_action increment discrete time by 1. The function qsmm_actor_shr_sig

decrements discrete time by 1. The functions qsmm_get_actor_naction_per_evt and qsmm_

set_actor_naction_per_evt retrieve and set a multiplier for converting discrete time to the
number of output signals emitted.

The actor can also track continuous time equal to a logical period of time an event his-
tory occupies. The actor can use continuous time to compute spur increment velocities when
calculating the probabilities of output signals.

Use the function described below to convey to an actor information that a period of continuous
time passed in the event history. The actor should not receive input signals during this period.
If there are input signals to receive, split the period into segments containing no input signals to
receive and call this function for every such segment in consecutive order. Between those calls,
call appropriate API functions to convey the input signals to the actor and emit output signals.

[Function]int qsmm_actor_time_delta (qsmm actor t actor, double time_delta)
This function increments by time delta continuous time associated with an actor.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument time delta is not finite, or incremented continuous time would be
negative.

QSMM_ERR_INFIN

Incremented continuous time would be positive infinity.

Use the following function to get the current value of continuous time associated with an
actor.

[Function]double qsmm_get_actor_continuous_time (qsmm actor t actor)
This function returns the value of continuous time associated with an actor. A returned value
is always finite and non-negative.

Use the following functions to get the value of discrete time associated with an actor or set
discrete time to an arbitrary value.

[Function]long qsmm_get_actor_discrete_time (qsmm actor t actor)
This function returns the value of discrete time associated with an actor.

[Function]void qsmm_set_actor_discrete_time (qsmm actor t actor, long tmd)
This function sets to tmd the value of discrete time associated with an actor.

The following enumeration specifies a type of time used by a small actor for calculating spur
increment velocity.

[Enumeration]qsmm_time_e
This enumeration specifies a type of time. It contains the following elements.

QSMM_TIME_DISCRETE

Discrete time.

QSMM_TIME_CONTINUOUS

Continuous time.

By default, an actor uses continuous time for calculating spur increment velocities, with the
exception that a small actor associated with a large actor uses discrete time to calculate the
increment velocity of automatic spur. See Section 2.8 [Automatic Spur], page 63, for more
information on the concept of automatic spur.

Use the following functions to query or set the type of time for calculating the increment
velocity of spur of a particular type by a small actor.

Chapter 2: Adaptive Probabilistic Mapping 36

[Function]int qsmm_get_actor_spur_time (qsmm actor t actor, int spur_type,
enum qsmm time e *time_type_p)

If time type p is not NULL, this function sets *time type p equal to the type of time for
calculating the increment velocity of spur of spur type type by a small actor. Spur types
have zero-based indices.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument spur type is negative or greater than or equal to the number of
spur types specified in the field nspur of qsmm_actor_desc_s structure when
creating the actor.

QSMM_ERR_NOTSUP

The actor is the large one.

[Function]int qsmm_set_actor_spur_time (qsmm actor t actor, int spur_type,
enum qsmm time e time_type)

This function sets to time type the type of time for calculating the increment velocity of
spur of spur type type by a small actor. Spur types have zero-based indices. The values of
time type not matching to the elements of qsmm_time_e enumeration lead to undefined actor
behavior.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument spur type is negative or greater than or equal to the number of
spur types specified in the field nspur of qsmm_actor_desc_s structure when
creating the actor.

QSMM_ERR_NOTSUP

The actor is the large one.

The function qsmm_actor_create initializes the types of time for all spur types of a newly
created small actor to QSMM_TIME_CONTINUOUS.

2.5.3 Receiving Input Signals

An actor has a buffer containing an n-gram of identifiers of signals from the event history or
a list of signal identifiers encoding a current action choice state. The field ngram_sz of qsmm_
actor_desc_s structure passed to the function qsmm_actor_create when creating the actor
specifies the number of signal identifiers in the buffer. The function qsmm_get_actor_ngram_sz

returns that number for a created actor.

The function qsmm_actor_create initializes the elements of that buffer to minimum allowed
signal identifiers specified by the field range_sig_p of qsmm_actor_desc_s structure when cre-
ating the actor.

The function qsmm_get_actor_sig_ngram provides direct access to the buffer as an array of
signal identifiers.

The functions qsmm_actor_shl_sig and qsmm_actor_reg_sig_in shift the buffer one signal
left and append a new signal to the buffer. Shifting the buffer one signal left implies incrementing
by 1 discrete time tracked by the actor.

Call the function qsmm_actor_shl_sig to shift the buffer one signal left and append a new
signal to the buffer without updating statistics on action choice states.

Call the function qsmm_actor_reg_sig_in if after shifting the buffer one signal left and
appending a new signal to the buffer, it encodes a current action choice state. That function

Chapter 2: Adaptive Probabilistic Mapping 37

updates statistics on the current action choice state using information recorded when that action
choice state occurred the previous time in the event history.

To set a current action choice state for an actor, use a series of calls to qsmm_actor_shl_sig

followed by a call to qsmm_actor_reg_sig_in. Alternatively, obtain a pointer to the buffer by
qsmm_get_actor_sig_ngram, set the content of that buffer shifted one signal right, and call
qsmm_actor_reg_sig_in to shift the buffer one signal left with setting the rightmost signal of
the current action choice state.

Use the following function to shift the buffer containing an n-gram of signals from the event
history one signal left, append a signal to the buffer, and increment by 1 discrete time without
updating information on action choice states.

[Function]int qsmm_actor_shl_sig (qsmm actor t actor, qsmm sig t sig_last,
qsmm sig t *sig_first_p)

This function shifts one signal left the content of the buffer in actor containing an n-gram
of signals from the event history and appends signal sig last to the end of that buffer. The
function increments by 1 discrete time tracked by the actor. If sig first p is not NULL, the
function returns in *sig first p the leftmost signal in the buffer before the shift.

On success, the function returns a non-negative value. If sig last is greater than or equal to
the number of signals of the actor, the function returns negative error code QSMM_ERR_INVAL.

For example, if the buffer contained signals <3, 6, 2>, then after executing the lines

qsmm_sig_t sig_first=QSMM_SIG_INVALID;

qsmm_actor_shl_sig(actor,4,&sig_first);

the buffer would contain signals <6, 2, 4>, and sig_first would be equal to 3.

Use the following function to perform the operation opposite to the operation performed by
the function qsmm_actor_shl_sig.

[Function]int qsmm_actor_shr_sig (qsmm actor t actor, qsmm sig t sig_first,
qsmm sig t *sig_last_p)

This function shifts one signal right the content of the buffer in actor containing an n-gram
of signals from the event history and prepends signal sig first to the beginning of that buffer.
The function decrements by 1 discrete time tracked by the actor. If sig last p is not NULL,
the function returns in *sig last p the rightmost signal in the buffer before the shift.

On success, the function returns a non-negative value. If sig first is greater than or equal to
the number of signals of the actor, the function returns negative error code QSMM_ERR_INVAL.

Use the following function to shift the buffer containing an n-gram of signals from the event
history one signal left, append a signal to the buffer, and increment by 1 discrete time with
updating statistics on a current action choice state.

[Function]int qsmm_actor_reg_sig_in (qsmm actor t actor, qsmm sig t sig)
This function shifts one signal left the content of the buffer in actor containing an n-gram
of signals from the event history and appends signal sig to the end of that buffer. The
resulting content of the buffer shall encode an action choice state. The function increments
by 1 discrete time tracked by the actor.

If the action choice state did not occur earlier in the event history, the function finishes
execution and reports success. If the action choice state occurred earlier in the event history,
the function processes a cycle between the two occurrences of the same action choice state.
A cycle type is the pair comprised of that action choice state and an output signal emitted
when that action choice state occurred the previous time in the event history (we refer to
that time as the time of cycle start). The output signal emitted is the cycle direction.

Chapter 2: Adaptive Probabilistic Mapping 38

If current discrete time is less than or equal to the discrete time of cycle start, the function
finishes execution and reports success. Otherwise, the function updates statistics on the cycle
type in the following way:

– increments by 1 the number of occurrences of that cycle type;

– increments the sum of discrete time periods for the cycle type by the difference between
current discrete time and the discrete time of cycle start (we refer to that difference as
discrete cycle period);

– increments the sum of continuous time periods for the cycle type by the difference be-
tween current continuous time and the continuous time of cycle start (we refer to that
difference as continuous cycle period);

– for every spur type, the function increases the sum of spur increments for the cycle type
by the difference between a current spur value and a spur value at the cycle start.

If the actor uses automatic spur, the function increments it by the logarithm of observed
probability of that cycle type in the event history (see Section 2.8 [Automatic Spur], page 63,
for additional information).

To be able to query mean discrete cycle period by the function qsmm_get_actor_discrete_

cycle_period_mean, the function qsmm_actor_reg_sig_in increments by 1 the total number
of cycles processed and increments the total sum of discrete cycle periods.

The function qsmm_actor_reg_sig_in returns a non-negative value on success or a negative
error code on failure. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The value of sig is greater than or equal to the number of signals of the actor.

QSMM_ERR_NGRAM

After shifting one signal left the content of the buffer and appending signal sig
to its end, the buffer would not encode a valid action choice state. To determine
the validity of an action choice state, the function checks the content of the
buffer for accordance with allowed ranges of signal identifiers specified by the
field range_sig_p of qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_INFIN

The operation of computing the increment of automatic spur or the operation
of increasing the sum of spur increments for the cycle type returned an infinite
result.

QSMM_ERR_STORAGE

Statistics storage failure. See Section 3.7 [Getting the Reason of a Storage Fail-
ure], page 95, for how to get an error message describing the failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

A statistics storage access function generated an error message but cannot convert
it to a wide string according to a current locale, or a storage redirection function
reported QSMM_ERR_ILSEQ.

QSMM_ERR_NOMEM

A statistics storage access function reported out of memory error.

Note: you should call the function qsmm_actor_reg_sig_in for increasing values of
discrete time tracked by the actor. Otherwise, that function might finish execution
just after making the buffer encode an action choice state.

Use the following function to obtain direct access to the buffer.

Chapter 2: Adaptive Probabilistic Mapping 39

[Function]qsmm_sig_t * qsmm_get_actor_sig_ngram (qsmm actor t actor)
This function returns the pointer to the buffer in actor containing an n-gram of signals from
the event history. That buffer is an array of signal identifiers with the number of elements
equal to the field ngram_sz of qsmm_actor_desc_s structure passed to the function qsmm_

actor_create when creating the actor; the function qsmm_get_actor_ngram_sz returns that
number for an actor. The function qsmm_get_actor_sig_ngram never returns NULL.

Use the function qsmm_get_actor_sig_ngram to temporarily replace the content of the buffer
to calculate the probabilities of output signals for another action choice state. For that, save the
content in another array, replace the content with a signal list encoding another action choice
state, calculate the probabilities of output signals for the action choice state by the function
qsmm_actor_calc_action_prob, and restore original content.

To obtain the number of output signals emitted by an actor, it multiplies discrete time
by a parameter in the range 0 to 1 set by the function qsmm_set_actor_naction_per_evt

and retrieved by the function qsmm_get_actor_naction_per_evt. The default value of that
parameter is 0.5.

Let us suppose that the field ngram_sz of qsmm_actor_desc_s structure passed to the func-
tion qsmm_actor_create when creating an actor was equal to NGRAM_SZ. There are three com-
mon modes of setting a current action choice state for the actor.

1. Action choice states solely consist of input signals of the actor. Let us suppose that qsmm_
sig_t sig_ngram[NGRAM_SZ] is an array of signal identifiers encoding an action choice
state.

A. Using the functions qsmm_actor_shl_sig and qsmm_actor_reg_sig_in.

The call qsmm_set_actor_naction_per_evt(actor,1.0/(NGRAM_SZ+1)) is necessary
at the beginning if the function for computing the relative probability of an output
signal depends on the number of output signals emitted by the actor.

In the general case, use a block of source code like this to set the action choice state
as the current one:

int rc;

for (int ii=0; ii<NGRAM_SZ-1; ii++)

if ((rc=qsmm_actor_shl_sig(actor,sig_ngram[ii],0))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_in(actor,sig_ngram[NGRAM_SZ-1]))<0)

REPORT_ERROR(rc);

If NGRAM_SZ is equal to 1, this block of source code reduces to:

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[0]);

if (rc<0) REPORT_ERROR(rc);

If NGRAM_SZ is equal to 2, the block reduces to:

int rc;

if ((rc=qsmm_actor_shl_sig(actor,sig_ngram[0],0))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_in(actor,sig_ngram[1]))<0)

REPORT_ERROR(rc);

B. Using the functions qsmm_get_actor_sig_ngram and qsmm_actor_reg_sig_in.

In the general case, use a block of source code like this to set the action choice state
as the current one:

memmove(qsmm_get_actor_sig_ngram(actor)+1,

sig_ngram, (NGRAM_SZ-1)*sizeof(*sig_ngram));

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[NGRAM_SZ-1]);

if (rc<0) REPORT_ERROR(rc);

Chapter 2: Adaptive Probabilistic Mapping 40

If NGRAM_SZ is equal to 1, this block of source code reduces to:

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[0]);

if (rc<0) REPORT_ERROR(rc);

If NGRAM_SZ is equal to 2, the block reduces to:

qsmm_get_actor_sig_ngram(actor)[1]=sig_ngram[0];

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[1]);

if (rc<0) REPORT_ERROR(rc);

2. Action choice states consist of last output signal emitted and input signals. Let us sup-
pose that qsmm_sig_t sig_ngram[NGRAM_SZ-1] is an array of input signals. We are not
completely replacing buffer content with input signals—last signal emitted stored in the
rightmost buffer element should become the leftmost buffer element.

If state0 is an output signal denoting the initial state of a finite automaton, the call qsmm_
actor_shl_sig(actor,state0,0) is necessary at the beginning.

A. Using the functions qsmm_actor_shl_sig and qsmm_actor_reg_sig_in.

The call qsmm_set_actor_naction_per_evt(actor,1.0/NGRAM_SZ) is also necessary
at the beginning if the function for computing the relative probability of an output
signal depends on the number of output signals emitted by the actor.

In the general case, use a block of source code like this to set the current action choice
state:

for (int ii=0; ii<NGRAM_SZ-2; ii++)

if ((rc=qsmm_actor_shl_sig(actor,sig_ngram[ii],0))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_in(actor,sig_ngram[NGRAM_SZ-2]))<0)

REPORT_ERROR(rc);

If NGRAM_SZ is equal to 2, this block of source code reduces to:

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[0]);

if (rc<0) REPORT_ERROR(rc);

If NGRAM_SZ is equal to 3, the block reduces to:

int rc;

if ((rc=qsmm_actor_shl_sig(actor,sig_ngram[0],0))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_in(actor,sig_ngram[1]))<0)

REPORT_ERROR(rc);

B. Using the functions qsmm_get_actor_sig_ngram and qsmm_actor_reg_sig_in.

In the general case, use a block of source code like this to set the current action choice
state:

qsmm_sig_t *const sig_ngram_p=qsmm_get_actor_sig_ngram(actor);

sig_ngram_p[1]=sig_ngram_p[NGRAM_SZ-1];

memmove(sig_ngram_p+2,sig_ngram,(NGRAM_SZ-2)*sizeof(*sig_ngram));

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[NGRAM_SZ-2]);

if (rc<0) REPORT_ERROR(rc);

If NGRAM_SZ is equal to 2, this block of source code reduces to:

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[0]);

if (rc<0) REPORT_ERROR(rc);

If NGRAM_SZ is equal to 3, the block reduces to:

qsmm_sig_t *const sig_ngram_p=qsmm_get_actor_sig_ngram(actor);

sig_ngram_p[1]=sig_ngram_p[2];

Chapter 2: Adaptive Probabilistic Mapping 41

sig_ngram_p[2]=sig_ngram[0];

const int rc=qsmm_actor_reg_sig_in(actor,sig_ngram[1]);

if (rc<0) REPORT_ERROR(rc);

3. Action choice states are n-grams of events from the event history; input and output signals
interleave. If sig in is an input signal, append it to the current action choice state n-gram
and shift it by the call qsmm_actor_reg_sig_in(actor,sig_in). This mode of setting a
current action choice state may be inefficient.

Using the following functions, you can obtain the discrete cycle period of last cycle regis-
tered by the function qsmm_actor_reg_sig_in and the mean discrete cycle period of all cycles
registered by that function since creating an actor. You can use this information in a custom
function for computing the relative probability of an output signal.

[Function]long qsmm_get_actor_discrete_cycle_period_last (qsmm actor t
actor)

This function returns the discrete cycle period of last cycle registered for actor by the function
qsmm_actor_reg_sig_in. A returned value is always non-negative.

If there was no call to the function qsmm_actor_reg_sig_in yet, or at the last call that
function did not register a cycle, the function qsmm_get_actor_discrete_cycle_period_

last returns 0.

[Function]double qsmm_get_actor_discrete_cycle_period_mean (qsmm actor t
actor)

This function returns the mean discrete cycle period of all cycles registered for actor by the
function qsmm_actor_reg_sig_in since creating the actor.

If qsmm_actor_reg_sig_in has not registered a cycle yet, the function qsmm_get_actor_

discrete_cycle_period_mean returns 0. This function returns only finite and non-negative
values.

2.5.4 Emitting an Output Signal

Emitting an output signal includes the following steps:

1. Calculate by the function qsmm_actor_calc_action_prob the probabilities of output sig-
nals for a current action choice state. This step is only necessary for a small actor.

2. Select by the function qsmm_get_actor_sig_action an output signal to emit. For a small
actor, that function uses output signal probabilities calculated in the previous step. For a
large actor, that function uses a Huffman tree corresponding to the current action choice
state.

3. Append by the function qsmm_actor_reg_sig_action the output signal to the buffer con-
taining an n-gram of signals from the event history (at this point—containing the current
action choice state). That function records the following information for the current action
choice state: current discrete time, current continuous time, current spur values, and the
output signal emitted.

In order to correctly calculate the probabilities of output signals, the actor should have a
correct parameter specifying a relation between discrete time and the number of output signals
emitted. Use the following functions to query or set the value of this parameter.

[Function]double qsmm_get_actor_naction_per_evt (qsmm actor t actor)
This function returns a number greater than 0 and less than or equal to 1 specifying the
mean number of output signals emitted by an actor per one unit of discrete time passed.

Chapter 2: Adaptive Probabilistic Mapping 42

[Function]int qsmm_set_actor_naction_per_evt (qsmm actor t actor, double
val)

This function sets to val the mean number of output signals emitted by an actor per one unit
of discrete time passed.

On success, the function returns a non-negative value. If val is not a finite number or is a
number less than or equal to 0 or is a number greater than 1, the function returns negative
error code QSMM_ERR_INVAL.

The function qsmm_actor_create initializes the mean number of output signals emitted per
one unit of discrete time passed to 0.5.

Let us suppose that the field ngram_sz of qsmm_actor_desc_s structure passed to the func-
tion qsmm_actor_create when creating an actor was equal to NGRAM_SZ. The general rules of
setting the parameter specifying the mean number of output signals emitted per one unit of
discrete time passed are the following:

1. If you use the functions qsmm_actor_shl_sig and qsmm_actor_reg_sig_in to set a current
action choice state, and it solely consists of input signals of the actor, then set this parameter
to 1.0/(NGRAM_SZ+1).

2. If you use the functions qsmm_actor_shl_sig and qsmm_actor_reg_sig_in to set a current
action choice state, and it consists of last output signal emitted and input signals, then set
this parameter to 1.0/NGRAM_SZ.

3. If you use the functions qsmm_get_actor_sig_ngram and qsmm_actor_reg_sig_in to set
a current action choice state, then use default parameter value 0.5.

4. If action choice states are n-grams of signals from the event history, and input and output
signals interleave, then use default parameter value 0.5.

The types of probabilities of output signals are the following.

[Enumeration]qsmm_prob_e
This enumeration specifies a type of probabilities. The enumeration contains the following
elements.

QSMM_PROB_AGGR

Aggregate probabilities based on learned and profile probabilities.

For a small actor, to calculate probabilities of QSMM_PROB_AGGR type, the function
qsmm_actor_calc_action_prob calculates probabilities of QSMM_PROB_LEARNED
and QSMM_PROB_PROFILE types (see below), multiplies each learned probability
by a corresponding profile probability, and normalizes a resulting array. For a
large actor, the function qsmm_actor_calc_action_prob called for an associated
small actor performs this operation for the nodes of a Huffman tree to obtain the
aggregate probabilities of tree leaves.

For a small actor, if you do not use profile probabilities, it is faster to calcu-
late probabilities of QSMM_PROB_LEARNED type—they are equal to probabilities of
QSMM_PROB_AGGR type in this case.

QSMM_PROB_LEARNED

For a small actor, learned probabilities for producing adaptive actions. For a
large actor, probabilities of QSMM_PROB_AGGR type.

QSMM_PROB_PROFILE

For a small actor, profile probabilities specified a priori in statistics storage (see
Section 3.2 [Structures for Accessing Storage], page 79, for how to pass profile
probabilities to storage access functions to write them to storage). For a large
actor, profile probabilities following from a subordination relationship of nodes

Chapter 2: Adaptive Probabilistic Mapping 43

of Huffman tree of an action choice state and from the probabilities of edges
connecting parent tree nodes with their child nodes.

QSMM_PROB_FQ

Probabilities proportional to observed frequencies of output signals registered
by the function qsmm_actor_reg_sig_action. For a large actor, calculating
probabilities of this type is faster compared to the other types.

QSMM_PROB_COUNT

The last element of this enumeration equal to the number of supported proba-
bility types.

Use the following function to calculate the probabilities of output signals for a current action
choice state.

[Function]int qsmm_actor_calc_action_prob (qsmm actor t actor, int rez1,
qsmm sig t sig_beg, qsmm sig t sig_end, enum qsmm prob e prob_type)

This function fills the internal array of actor with probabilities of prob type type calculated
for an action choice state encoded by the buffer containing an n-gram of signals from the event
history. The functions qsmm_actor_shl_sig, qsmm_actor_shr_sig, qsmm_actor_reg_sig_
in, and qsmm_actor_reg_sig_action access that buffer, and the function qsmm_get_actor_

sig_ngram returns a pointer to the buffer. The argument rez1 is for future use and must be
equal to 0.

For a small actor, the function qsmm_get_actor_sig_action stochastically selects an output
signal according to probabilities in that internal array. The function qsmm_actor_calc_

action_prob is much slower for a large actor compared to a small actor; you should call
this function for a large actor only to obtain explicit probability values—large actors support
calling qsmm_get_actor_sig_action without prior calling qsmm_actor_calc_action_prob.

The arguments sig beg and sig end can be both zero or may specify the identifiers of the
first signal (inclusive) and last signal (exclusive) of a signal segment for calculating the prob-
abilities. The probability of the first signal of this signal segment has offset sig beg in the
internal array. The function zeroes array elements that do not correspond to output signals.
If sig end is 0, the function uses the total number of actor signals for the identifier of last sig-
nal. The function operates faster when the signal segment is shorter, so specify the segment
as precisely as possible.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The value of sig beg is greater than or equal to the identifier of last signal of the
signal segment, or the value of sig end is greater than the total number of signals
of the actor, or prob type is invalid.

QSMM_ERR_NGRAM

The buffer does not encode a valid action choice state. To determine the validity
of an action choice state, the function checks the content of the buffer for accor-
dance with allowed ranges of signal identifiers specified by the field range_sig_p

of qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_CALLBACK

A helper function of QSMM_RELPROB_USER1 or QSMM_RELPROB_USER2 type for cal-
culating the relative probability of an output signal reported an error by returning
NaN.

Chapter 2: Adaptive Probabilistic Mapping 44

QSMM_ERR_STORAGE

Statistics storage failure. See Section 3.7 [Getting the Reason of a Storage Fail-
ure], page 95, for how to get an error message describing the failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

A generated error message is not convertible to a wide string according to a
current locale, or a storage redirection function reported QSMM_ERR_ILSEQ.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave a large actor in inconsistent state. If the large actor is in inconsistent state, then,
if after removing a reason of an error a repeated call to this function succeeds, the actor’s
state becomes consistent.

Use the following function to obtain a pointer to the internal array with the probabilities of
output signals calculated by the function qsmm_actor_calc_action_prob.

[Function]double * qsmm_get_actor_choice_sig_prob (qsmm actor t actor)
This function returns a pointer to the internal array of actor holding the relative probabilities
of output signals. This function never returns NULL. The number of elements in the array is
equal to the total number of actor signals returned by the function qsmm_get_actor_nsig.
The function qsmm_actor_calc_action_prob fills the array with probabilities of a desired
type.

For a small actor, the function qsmm_get_actor_sig_action stochastically selects an output
signal according to probabilities in that array. A program can modify the array to affect
this stochastic selection. The function qsmm_get_actor_sig_action handles the situation
when the array contains elements equal to positive infinity or values that do not sum up to 1.
Conversely, modifying the array does not affect the behavior of qsmm_get_actor_sig_action
for a large actor.

The function qsmm_get_actor_choice_sig_prob locks the internal array: if a sparse vector
backs up the internal array, this function converts the sparse vector to an ordinary vector.
After this conversion, the actor keeps the internal array as an ordinary vector until the
function qsmm_actor_choice_sig_prob_release releases that internal array. Forgetting to
call qsmm_actor_choice_sig_prob_release after a call to qsmm_get_actor_choice_sig_

prob may dramatically decrease actor performance.

Use the following function to release a locked internal array.

[Function]void qsmm_actor_choice_sig_prob_release (qsmm actor t actor)
This function releases the internal array of actor locked by the function qsmm_get_actor_

choice_sig_prob. That internal array holds the relative probabilities of output signals. If
qsmm_get_actor_choice_sig_prob has not locked the internal array, qsmm_actor_choice_
sig_prob_release has no effect. You must not use a pointer obtained by qsmm_get_actor_

choice_sig_prob after releasing the array.

When the function qsmm_get_actor_choice_sig_prob has locked the internal array, and you
call the function qsmm_actor_calc_action_prob, or when you call it for a large actor, qsmm_
actor_calc_action_prob uses an ordinary vector for storing the probabilities of output signals,
so you can access the elements of this ordinary vector via a pointer returned by qsmm_get_actor_
choice_sig_prob. When the internal array is in released state, qsmm_actor_calc_action_prob

Chapter 2: Adaptive Probabilistic Mapping 45

called for a small actor can use an ordinary or sparse vector for storing the probabilities of output
signals depending on the properties of a probability profile and the value of sparse_fill_max
field of qsmm_actor_desc_s structure specified when creating the actor.

You can obtain the handle of an ordinary or sparse vector holding the relative probabilities
of output signals. It is a cheap operation that does not perform locking or converting a sparse
vector to an ordinary vector. You can access a returned vector in read-only mode. See Section 6.2
[Ordinary and Sparse Vectors], page 250, for how to access vector elements.

[Function]qsmm_vec_t qsmm_get_actor_choice_sig_prob_vec (qsmm actor t
actor)

This function returns the handle of an ordinary or sparse vector of actor holding the relative
probabilities of output signals. This function never returns NULL. The function qsmm_actor_

calc_action_prob fills the vector with probabilities of a desired type. For a small actor,
the function qsmm_get_actor_sig_action stochastically selects an output signal according
to probabilities in that vector.

Use the following function to stochastically select an output signal.

[Function]int qsmm_get_actor_sig_action (qsmm actor t actor, int rez1,
qsmm sig t sig_beg, qsmm sig t sig_end, qsmm sig t *sig_out_p)

If actor is a small one, this function stochastically selects an output signal according to
relative probabilities stored in the internal array of relative probabilities of output signals.
The function qsmm_actor_calc_action_prob fills the internal array with probabilities of
a desired type. The function qsmm_get_actor_choice_sig_prob returns a pointer to the
elements of that array. The function qsmm_get_actor_choice_sig_prob_vec returns a read-
only view of that array for speeding up accessing its content.

If actor is a large one, the function qsmm_get_actor_sig_action selects an output signal for
an action choice state encoded by the buffer containing an n-gram of signals from the event
history without using the aforementioned internal array. The functions qsmm_actor_shl_sig,
qsmm_actor_shr_sig, qsmm_actor_reg_sig_in, and qsmm_actor_reg_sig_action access
that buffer, and the function qsmm_get_actor_sig_ngram returns a pointer to the buffer.
The function qsmm_get_actor_sig_action uses the Huffman tree of this action choice state
to perform fast choice of an output signal (the number of those signals can be very large)
according to probabilities of QSMM_PROB_AGGR type. The function qsmm_actor_calc_action_

prob can compute those probabilities; however, for a large actor, there is no need to call that
function before calling qsmm_get_actor_sig_action. You should minimize the number of
calls to the function qsmm_actor_calc_action_prob to calculate probabilities of QSMM_PROB_
AGGR type for a large actor, because that function operates slowly in this mode.

The function qsmm_get_actor_sig_action stores a selected output signal in *sig out p if
sig out p is not NULL. The argument rez1 is for future use and must be equal to 0.

The arguments sig beg and sig end can be both zero or may specify the identifiers of the
first signal (inclusive) and last signal (exclusive) of a segment for selecting an output signal.
However, for a large actor, the signal segment must include all output signals of the actor;
see Section 2.7 [Specifying Output Signal Weights], page 58, for how to adaptively select
an output signal from various subsets of output signals of a large actor. For a small actor,
the probability of the first signal of this signal segment has offset sig beg in the internal
array. If sig end is 0, the function uses the total number of actor signals for the identifier of
last signal. The function operates faster when the signal segment is shorter, so specify the
segment as precisely as possible. For a small actor, the function does not check whether a
signal it selects actually belongs to a set of output signals—if an internal array element within
the signal segment is positive, then the function may select a corresponding signal. For a
small actor, if at least one relative probability in the internal array within the signal segment

Chapter 2: Adaptive Probabilistic Mapping 46

is positive infinity, the function selects an output signal as a uniformly distributed random
element from a set of all signals (within the signal segment) with relative probabilities equal
to positive infinity.

To stochastically select an output signal, the function uses either a random number generator
provided via the field rng of qsmm_actor_desc_s structure when creating the actor by the
function qsmm_actor_create or an instance of default random number generator allocated
automatically if that field was NULL. Call the function qsmm_get_actor_rng to obtain the
handle of a random number generator used by an actor, for example, to seed the generator.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

One of the following conditions is true:

– sig beg is greater than or equal to the identifier of last signal of the signal
segment;

– sig end is greater than the total number of signals of the actor;

– sig beg is greater than the lowest output signal identifier of a large actor;

– sig end is less than or equal to the highest output signal identifier of a large
actor.

QSMM_ERR_WEIGHT

For a small actor, the internal array contains (within the signal segment) a neg-
ative element or a non-finite element different from positive infinity.

QSMM_ERR_INFIN

For a small actor, the internal array does not contain elements (within the sig-
nal segment) equal to positive infinity, but the sum of array elements is pos-
itive infinity. For a large actor, the function qsmm_get_actor_sig_action or
qsmm_actor_reg_sig_in called for an associated small actor when traversing a
Huffman tree from the root node to a leaf node reported QSMM_ERR_INFIN. This
error can leave the large actor in inconsistent state.

QSMM_ERR_NOCHOICE

For a small actor, the internal array does not contain at least one positive element
(within the signal segment).

QSMM_ERR_NGRAM

For a large actor, the buffer does not encode a valid action choice state. To
determine the validity of an action choice state, the function checks the content
of the buffer for accordance with allowed ranges of signal identifiers specified by
the field range_sig_p of qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_CALLBACK

For a large actor, a helper function of QSMM_RELPROB_USER1 or QSMM_RELPROB_
USER2 type for calculating the relative probability of an output signal reported
an error by returning NaN. The function qsmm_actor_calc_action_prob called
for an associated small actor when traversing a Huffman tree from the root node
to a leaf node calls this helper function. This error can leave the large actor in
inconsistent state.

QSMM_ERR_STORAGE

Failure of statistics storage of a large actor. See Section 3.7 [Getting the Reason
of a Storage Failure], page 95, for how to get an error message describing the
failure. This error can leave the large actor in inconsistent state.

Chapter 2: Adaptive Probabilistic Mapping 47

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected for a large
actor. This error can leave the large actor in inconsistent state.

QSMM_ERR_ILSEQ

For a large actor, a generated error message is not convertible to a wide string
according to a current locale, or a storage redirection function reported QSMM_

ERR_ILSEQ. This error can leave the large actor in inconsistent state.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation by a large actor. This
error can leave the large actor in inconsistent state.

Use the following function to register a selected output signal.

[Function]int qsmm_actor_reg_sig_action (qsmm actor t actor, qsmm sig t
sig)

This function registers sig as an output signal of actor emitted in an action choice state
encoded by the buffer for an n-gram of signals from the event history.

The function records the following information for the action choice state:

– discrete time of last occurrence of that action choice state in the event history equal to
current discrete time tracked by the actor;

– continuous time of last occurrence of that action choice state in the event history equal
to current continuous time tracked by the actor;

– current spur value for every spur type;

– the output signal emitted in the action choice state.

Finally, the function shifts the buffer one signal left, appends sig to the end of that buffer,
and increments by 1 discrete time tracked by the actor.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

Signal sig is not an output signal of the actor.

QSMM_ERR_NGRAM

The buffer does not encode a valid action choice state. To determine the validity
of an action choice state, the function checks the content of the buffer for accor-
dance with allowed ranges of signal identifiers specified by the field range_sig_p

of qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_STORAGE

Statistics storage failure. See Section 3.7 [Getting the Reason of a Storage Fail-
ure], page 95, for how to get an error message describing the failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

A statistics storage access function generated an error message but cannot convert
it to a wide string according to a current locale, or a storage redirection function
reported QSMM_ERR_ILSEQ.

QSMM_ERR_NOMEM

A statistics storage access function reported out of memory error.

Chapter 2: Adaptive Probabilistic Mapping 48

For a small actor, adaptively emit an output signal by a sequence of function calls like this:

int rc;

if ((rc=

qsmm_actor_calc_action_prob(actor, 0, NSIG_IN, NSIG_IN+NSIG_OUT,

QSMM_PROB_LEARNED))<0)

REPORT_ERROR(rc);

qsmm_sig_t sig_out=QSMM_SIG_INVALID;

if ((rc=

qsmm_get_actor_sig_action(actor, 0, NSIG_IN, NSIG_IN+NSIG_OUT,

&sig_out))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_action(actor,sig_out))<0) REPORT_ERROR(rc);

For a large actor, a call to qsmm_actor_calc_action_prob is redundant and only decreases
performance. The sequence of function calls looks like this:

int rc;

qsmm_sig_t sig_out=QSMM_SIG_INVALID;

if ((rc=

qsmm_get_actor_sig_action(actor, 0, NSIG_IN, NSIG_IN+NSIG_OUT,

&sig_out))<0)

REPORT_ERROR(rc);

if ((rc=qsmm_actor_reg_sig_action(actor,sig_out))<0) REPORT_ERROR(rc);

For a small actor, you can override an output signal selected by the function qsmm_get_

actor_sig_action or omit calling that function. That is, you can pass to the function qsmm_

actor_reg_sig_action an output signal not obtained by qsmm_get_actor_sig_action. This
possibility does not exist for a large actor—it is incorrect to omit a call to qsmm_get_actor_sig_
action before calling qsmm_actor_reg_sig_action or to pass to the latter function a signal
different from a signal returned by a preceding call to qsmm_get_actor_sig_action.

Note: you should not call the functions qsmm_actor_spur_delta (see Section 2.5.1
[Incrementing Spur], page 34) and qsmm_actor_time_delta (see Section 2.5.2 [In-
crementing Time], page 34) between a call to qsmm_actor_reg_sig_in and a sub-
sequent call to qsmm_actor_reg_sig_action.

In QSMM 1.16 there appeared a function returning the probability of last output signal
selected. You can use this function to implement timed emitting output signals, for example,
according to the exponential probability distribution.

[Function]double qsmm_get_actor_prob_action (qsmm actor t actor)
This function returns the probability of last output signal selected by the function qsmm_

get_actor_sig_action for an actor. For a small actor, it is a probability corresponding to
an element of internal array of relative probabilities of output signals. For a large actor, it is
the probability of a path from the root node of a Huffman tree to its leaf node corresponding
to the output signal. The returned value is always in the range 0 to 1 (inclusive). If there
was no call to qsmm_get_actor_sig_action yet, qsmm_get_actor_prob_action returns 0.

2.6 Customizing the Relative Probability Function

The efficiency of operation of a small or large actor, that is, the optimality of output signals
the actor adaptively emits, depends on the form of a function returning the relative probability
of an output signal. It may well be true that, for different kinds of applications, different
functions are more suitable. QSMM provides a few built-in functions a developer may select for
use by an actor. Unfortunately, the author of QSMM experiences problems with: (1) providing
a sound theoretical basis for using those functions in QSMM (that basis might not exist for

Chapter 2: Adaptive Probabilistic Mapping 49

some functions); (2) devising functions that give better efficiency than the functions currently
provided in QSMM. The author’s own experimenting had shown that, for some special cases,
there do exist more efficient functions, but he did fail to find general forms for those functions
making it possible to utilize them for wider ranges of values of actor parameters. To provide a
way to solve these problems by developers, QSMM starting from version 1.15 supports specifying
a custom relative probability function.

The main parameter of a relative probability function is its type. If the type specifies a custom
form for the function, the developer shall provide a helper function for this form. Common
relative probability function forms depend on the number of output signals and the way of spur
perception and spur weight for every spur type. All relative probability function forms depend
on actor temperature.

2.6.1 Relative Probability Function Types

Use the following functions to query or set the type of a relative probability function used by
an actor.

[Function]enum qsmm_relprob_e qsmm_get_actor_relprob_type (qsmm actor t
actor)

This function returns the type of a function used by an actor to calculate the relative prob-
ability of an output signal. If the actor is the large one, the function returns the type of a
function used by a small actor associated with the large actor.

[Function]void qsmm_set_actor_relprob_type (qsmm actor t actor, enum
qsmm relprob e relprob_type)

This function sets to relprob type the type of a function used by an actor to calculate
the relative probability of an output signal. If the actor is the large one, qsmm_set_actor_
relprob_type sets the type of a function used by a small actor associated with the large actor.
The values of relprob type not matching to the elements of qsmm_relprob_e enumeration
lead to undefined actor behavior.

Below there is a description of an enumeration specifying supported relative probability
function types.

[Enumeration]qsmm_relprob_e
This enumeration specifies the supported types of a function used by an actor to calculate
the relative probability of an output signal.

The descriptions of elements of this enumeration use the following notations.

h An action choice state.

z An output signal.

ne The number of spur types.

T Actor temperature multiplied by some constant.

F(h,z) The relative probability of emitting output signal z in action choice state h.

L Mean discrete cycle period—mean discrete time period between every occurrence
of action choice state h with emitting output signal z and a subsequent occurrence
of h—multiplied by a value returned by the function qsmm_get_actor_naction_

per_evt.

nout The mean number of output signals of the actor (for more information on com-
puting this number, see Section 2.6.5 [Number of Output Signals], page 55).

W[i] Spur weight for spur type i.

Chapter 2: Adaptive Probabilistic Mapping 50

C(h,z,i) The ratio of spur increment velocities computed depending on the way of spur
perception (see Section 2.6.3 [Spur Perception], page 53) for spur type i.

The enumeration contains the following elements.

QSMM_RELPROB_BUILTIN1

The relative probability function has the formula

F (h, z) =
(√

κ
(√

κ+
√
κ+ 1

)
(nout − 1)

) 1
T

∑ne

i=1W [i]C(h, z, i)
,

where κ = 2L. The paper “An Approach to Optimal Action Generation for a Sys-
tem that Interacts with the Environment” available from the project homepage
provides more details about this formula.

QSMM_RELPROB_BUILTIN2

The relative probability function has the formula

F (h, z) = n
L+1
2T

∑ne

i=1W [i]C(h, z, i)
out .

The author has empirically found this formula when developing QSMM 1.15 and
making an actor emit output signals with frequencies proportional to output
signal probabilities specified a priori. A spur increment supplied to the actor just
after emitting an output signal was equal to the logarithm of its probability.

QSMM_RELPROB_BUILTIN3

The relative probability function has the formula

F (h, z) = n
L
T

∑ne

i=1W [i]C(h, z, i)
out .

This formula is a simplification of QSMM_RELPROB_BUILTIN2 and is for developers
who prefer beauty and/or simplicity.

QSMM_RELPROB_USER1

The relative probability function has the formula

F (h, z) = exp

(
f(L)

T

ne∑
i=1

W [i]C(h, z, i)

)
,

where f(L) is a function of qsmm_relprob_user1_func_t type provided by a de-
veloper via a call to qsmm_set_actor_relprob_helper (see Section 2.6.2 [Helper
Relative Probability Functions], page 51). If the developer has not provided the
function f(L), that function is equal to 1 by default.

QSMM_RELPROB_USER2

The relative probability function has the formula

F (h, z) = e
g
T ,

where g is a function of qsmm_relprob_user2_func_t type provided by a devel-
oper via a call to qsmm_set_actor_relprob_helper (see Section 2.6.2 [Helper
Relative Probability Functions], page 51). The function g receives the value
of z and statistics associated with h and z. These function arguments may be
necessary to devise a sophisticated relative probability function.

When creating a small actor, the function qsmm_actor_create initializes the type of relative
probability function of this small actor to QSMM_RELPROB_BUILTIN1. When creating a large
actor, the function qsmm_actor_create initializes the type of relative probability function of a
small actor associated with the large actor to QSMM_RELPROB_BUILTIN2.

Chapter 2: Adaptive Probabilistic Mapping 51

2.6.2 Helper Relative Probability Functions

Below there are descriptions of types for functions f(L) and g.

[Data type]qsmm_relprob_user1_func_t
This is a type for the pointer to a helper function provided by a developer for relative
probability function type QSMM_RELPROB_USER1. The following declaration corresponds to
this type:

typedef double

(*qsmm_relprob_user1_func_t)(

qsmm_actor_t actor,

double cycle_period,

void *paramp

);

The argument actor specifies an actor called the helper function. The argument cycle period
holds the value of L. The argument paramp is a user parameter specified when setting the
helper function for the actor.

On success, the helper function should return the value of f(L). On failure, the helper function
should return NaN; in this case, the function qsmm_actor_calc_action_prob returns QSMM_
ERR_CALLBACK.

[Data type]qsmm_relprob_user2_func_t
This is a type for the pointer to a helper function provided by a developer for relative
probability function type QSMM_RELPROB_USER2. The following declaration corresponds to
this type:

typedef double

(*qsmm_relprob_user2_func_t)(

qsmm_actor_t actor,

qsmm_sig_t sig_cycle,

const struct qsmm_state_s *state_p,

const struct qsmm_cycle_s *cycle_p,

const struct qsmm_sspur_s *sspur_p,

const struct qsmm_cspur_s *cspur_p,

void *paramp

);

The argument actor specifies an actor called the helper function. The argument sig cycle
holds the value of z. The arguments state p, cycle p, sspur p, and cspur p hold statistics
associated with h and z. See Section 3.2 [Structures for Accessing Storage], page 79, for the
descriptions of corresponding structures. The argument paramp is a user parameter specified
when setting the helper function for the actor.

On success, the helper function should return the value of g. On failure, the helper function
should return NaN; in this case, the function qsmm_actor_calc_action_prob returns QSMM_
ERR_CALLBACK.

To obtain working parameters of an actor, you may call such functions as qsmm_get_actor_
nsig_ctrl and qsmm_get_actor_discrete_cycle_period_mean in a helper function. Call the
function qsmm_get_actor_sig_ngram to obtain the n-gram of h if you need to access application-
specific information associated with h.

Use the following functions to retrieve or set a helper function for an actor.

Chapter 2: Adaptive Probabilistic Mapping 52

[Function]void qsmm_get_actor_relprob_helper (qsmm actor t actor, void
**helper_func_pp, void **helper_func_param_pp)

This function retrieves information on a helper function used by an actor when calculat-
ing the relative probabilities of output signals. If there is such helper function set for the
actor, and helper func pp is not NULL, the function qsmm_get_actor_relprob_helper sets
*helper func pp equal to the pointer to the helper function. If there is no such helper func-
tion set for the actor, and helper func pp is not NULL, qsmm_get_actor_relprob_helper
sets *helper func pp to NULL. If helper func param pp is not NULL, this function sets
*helper func param pp equal to the user parameter of that helper function specified when
setting it for the actor. If the actor is the large one, qsmm_get_actor_relprob_helper

retrieves information on a helper function used by a small actor associated with the large ac-
tor. A particular interpretation of a pointer stored in *helper func pp depends on a relative
probability function type set for the actor by a call to qsmm_set_actor_relprob_type.

[Function]void qsmm_set_actor_relprob_helper (qsmm actor t actor, void
*helper_func_p, void *helper_func_param_p)

This function sets the pointer to a helper function used by an actor when calculating the
relative probabilities of output signals. The argument helper func p specifies that pointer.
Additionally, the function qsmm_set_actor_relprob_helper sets the user parameter of this
helper function to helper func param p. If the actor is the large one, qsmm_set_actor_
relprob_helper sets the helper function for a small actor associated with the large actor.

A particular interpretation of a helper func p pointer depends on a relative probability func-
tion type set for the actor by a call to qsmm_set_actor_relprob_type. Passing a pointer
that does not conform with the relative probability function type leads to undefined behavior.

The value of helper func p can be NULL. This NULL value means the absence of a helper
function for the actor. Setting the NULL value makes a certain sense when the relative
probability function type is QSMM_RELPROB_USER1.

To provide an example of using the functions qsmm_set_actor_relprob_type and qsmm_

set_actor_relprob_helper, let us suppose a developer has proved that it is mathematically
correct to use a function for calculating the relative probability of an output signal similar to
the function QSMM_RELPROB_BUILTIN2 but with the following one difference: the numerator of
the exponent contains the expression L instead of L+1. To make an actor calculate the relative
probability of an output signal by this function, the developer may define the helper function
as:

#include <math.h>

static double

get_relprob_exp_mlt(

qsmm_actor_t actor,

double cycle_period,

void *paramp

) {

return log(qsmm_get_actor_nsig_ctrl(actor))*cycle_period/2;

}

To set this helper function for an actor, the developer may add the function calls:

qsmm_set_actor_relprob_type(actor,QSMM_RELPROB_USER1);

qsmm_set_actor_relprob_helper(actor,&get_relprob_exp_mlt,0);

Alternatively, the developer may add the function calls shown below. See Section 2.6.6 [Actor
Temperature], page 57, for a description of qsmm_set_actor_ktemperature function.

qsmm_set_actor_relprob_type(actor,QSMM_RELPROB_BUILTIN3);

qsmm_set_actor_ktemperature(actor,2);

Chapter 2: Adaptive Probabilistic Mapping 53

2.6.3 Spur Perception

Most of relative probability function formulas in Section 2.6.1 [Relative Probability Function
Types], page 49, contain the function C(h,z,i) equal to ratio between spur increment velocity
and mean spur increment velocity. The method of computing C(h,z,i) depends on the way of
spur perception for spur type i. The way of spur perception determines whether the ratio will
be generally positive or negative for generally positive or negative spur increments supplied to
the actor. There are two ways of spur perception: normal and inverse. The normal way of spur
perception provides generally positive ratio for generally positive spur increments and generally
negative ratio for generally negative spur increments. The inverse way of spur perception pro-
vides generally negative ratio for generally positive spur increments and generally positive ratio
for generally negative spur increments.

The following enumeration specifies the way of perception of spur of a particular type.

[Enumeration]qsmm_spur_perception_e
This enumeration specifies the way of spur perception for a spur type.

Below there are notations used in the descriptions of elements of this enumeration. In the
descriptions of notations, a cycle of type <h,z> is the event history segment between an
occurrence of action choice state h with emitting output signal z and a subsequent occurrence
of h.

t Discrete or continuous time for computing spur increment velocity.

E[i] The value of spur of i type the actor accumulated.

H(h,z)[i] The sum of increments of spur of i type over cycles of <h,z> type.

w(h,z) The sum of discrete or continuous cycle periods for cycles of <h,z> type.

The enumeration contains the following elements.

QSMM_SPUR_PERCEPTION_NORMAL

The value of C(h,z,i) is the ratio of spur increment velocity to the absolute value
of mean spur increment velocity for a cycle type:

C(h, z, i) =

tH(h,z)[i]∣∣E[i]

∣∣ω(h,z) , if E[i] 6= 0 ∧ ω(h,z) > 0;

0, otherwise.

When spur increments over the event history are non-negative, C(h,z,i) increases
as spur increment velocity increases. If spur increment velocity for a cycle type
is positive and equal to mean spur increment velocity, C(h,z,i) is equal to 1.

QSMM_SPUR_PERCEPTION_INVERSE

The value of C(h,z,i) is the negative ratio of the absolute value of mean spur
increment velocity to spur increment velocity for a cycle type:

C(h, z, i) =

−
∣∣E[i]

∣∣ω(h,z)

tH(h,z)[i]
, if t > 0 ∧H(h,z)[i] 6= 0;

0, otherwise.

When spur increments over the event history are negative, C(h,z,i) increases as
spur increment velocity increases. If spur increment velocity for a cycle type is
negative and equal to mean spur increment velocity, C(h,z,i) is equal to 1.

You can use the inverse way of spur perception to countervail negative spur with
the other negative spur perceived as positive one because of inverse way of spur
perception specified.

Chapter 2: Adaptive Probabilistic Mapping 54

Use the following functions to query or set the way of spur perception for a spur type.

[Function]int qsmm_get_actor_spur_perception (qsmm actor t actor, int
spur_type, enum qsmm spur perception e *spur_perception_p)

[Function]int qsmm_set_actor_spur_perception (qsmm actor t actor, int
spur_type, enum qsmm spur perception e spur_perception)

If spur perception p is not NULL, the function qsmm_get_actor_spur_perception sets
*spur perception p equal to the way of spur perception by an actor. The function qsmm_set_

actor_spur_perception sets the way of spur perception by an actor to spur perception.
The values of spur perception not matching to the elements of qsmm_spur_perception_e
enumeration lead to undefined actor behavior.

The argument actor specifies an actor handle. The argument spur type specifies a spur type
and cannot be less than −1 or greater than or equal to the number of spur types returned by
the function qsmm_get_actor_nspur for the actor. If the actor is the small one, specifying
spur type −1 is incorrect.

If the actor is the large one, the functions query or set the way of spur perception for a
corresponding spur type of a small actor associated with the large actor. Special spur type
−1 of a large actor corresponds to the automatic spur of an associated small actor (i.e. its
spur type 0).

On success, the functions return a non-negative value. On invalid spur type, the functions
return negative error code QSMM_ERR_INVAL. The value of spur type is invalid in the following
cases:

– actor is the small one and spur type is negative;

– spur type is less than −1;
– spur type is greater than or equal to the number of spur types specified in the field

nspur of qsmm_actor_desc_s structure when creating the actor.

The function qsmm_actor_create initializes the ways of spur perception for all spur types
of a newly created actor to QSMM_SPUR_PERCEPTION_NORMAL.

2.6.4 Spur Weight

Use the following functions to query or set spur weight denoted by W[i] in relative probability
function formulas mentioned in Section 2.6.1 [Relative Probability Function Types], page 49.

[Function]int qsmm_get_actor_spur_weight (qsmm actor t actor, int
spur_type, double *weight_p)

[Function]int qsmm_set_actor_spur_weight (qsmm actor t actor, int
spur_type, double weight)

If weight p is not NULL, the function qsmm_get_actor_spur_weight sets *weight p equal to
weight for a spur type of an actor. The value of *weight p obtained in this way is always
finite. The function qsmm_set_actor_spur_weight sets weight for a spur type of an actor
to weight.

The argument actor specifies an actor handle. The argument spur type specifies a spur type
and cannot be less than −1 or greater than or equal to the number of spur types returned by
the function qsmm_get_actor_nspur for the actor. If the actor is the small one, specifying
spur type −1 is incorrect.

If the actor is the large one, the functions query or set the weight of a corresponding spur
type of a small actor associated with the large actor. Special spur type −1 of a large actor
corresponds to the automatic spur of an associated small actor (i.e. its spur type 0).

On success, the functions return a non-negative value. On failure, the functions return
negative error code QSMM_ERR_INVAL. The following cases are failures:

– weight is not finite (is applicable only to qsmm_set_actor_spur_weight);

Chapter 2: Adaptive Probabilistic Mapping 55

– actor is the small one and spur type is negative;

– spur type is less than −1;
– spur type is greater than or equal to the number of spur types specified in the field

nspur of qsmm_actor_desc_s structure when creating the actor.

The function qsmm_actor_create initializes the weights of all spur types of a newly created
actor to 1.

2.6.5 Number of Output Signals

A function returning the relative probability of an output signal typically uses a parameter
equal to the number of output signals of an actor to perform the calculation. The function
qsmm_actor_create creates an actor with a particular number of output signals. However,
the function qsmm_set_actor_sig_weight can change output signal weights for a small actor,
or the function qsmm_set_actor_ngram_profile can assign preloaded probability profiles to
action choice states, and output signal weights may define a lesser number of output signals.
For example, if the actor had four output signals, and qsmm_set_actor_sig_weight set the
weight of one of them to zero, the nominal number of output signals is three. The same applies
to a probability profile for an action choice state (set in the statistics storage of a small actor or
by qsmm_set_actor_ngram_profile for a large actor): if the profile probability of an output
signal is zero, the nominal number of output signals is less than the number of output signals
defined when creating the actor.

However, the concept of the nominal number of output signals is weak. The weakness shows
up when positive weights (or profile probabilities) of output signals are different. In this case,
the nominal number of output signals might not be simply the number of output signals with
positive weights (or profile probabilities). For example, if four signals have weights <0.33, 0.33,
0.33, 0.01>, the nominal number of output signals is rather three than four.

When loading an assembler program into a node or changing the values of controlled prob-
ability variables of a node, QSMM uses the following algorithm for the approximate calculation
of the nominal number of output signals for a list of weights:

1. Zero c, the resulting nominal number of output signals.

2. Calculate a, the arithmetic mean of all positive weights of output signals.

3. For every output signal weight b, if b>a, then add 1 to c, otherwise add b/a to c.

Different action choice states in the event history can have different nominal numbers of
output signals. If a function returning the relative probability of an output signal depends on
the number of output signals, the function can use the mean nominal number of output signals
for this parameter. An actor can compute the mean nominal number of output signals based on
the nominal numbers of output signals calculated for the weights of the output signals of action
choice states occurred in the event history. The mean nominal number of output signals might
be the arithmetic or geometric mean of those nominal numbers of output signals. The concept of
the mean nominal number of output signals is weaker than the concept of the nominal number
of output signals.

You can retrieve or set the mean nominal number of output signals by the following functions.

[Function]double qsmm_get_actor_nsig_ctrl (qsmm actor t actor)
This function returns the mean nominal number of output signals of an actor. That number
is either the number of output signals calculated from the structure qsmm_actor_desc_s

passed to the function qsmm_actor_create when creating the actor, or the number of output
signals previously set by the function qsmm_set_actor_nsig_ctrl. You can call the function
qsmm_get_actor_nsig_ctrl from a helper function for computing the relative probability
of an output signal if the helper function depends on the number of output signals. A value
returned by qsmm_get_actor_nsig_ctrl is always finite and greater than or equal to 2.

Chapter 2: Adaptive Probabilistic Mapping 56

[Function]int qsmm_set_actor_nsig_ctrl (qsmm actor t actor, double val)
This function sets the mean nominal number of output signals of an actor to val. Built-in
functions returning the relative probability of an output signal use that number. A helper
function for computing the relative probability of an output signal provided by a developer
can also use that number.

On success, the function returns a non-negative value. If val is not a finite number or is a
number less than 2, the function returns negative error code QSMM_ERR_INVAL.

In the simplest case, if you do not change output signal weights and do not use profile
probabilities, there is no need to modify the mean nominal number of output signals initially set
by the function qsmm_actor_create for a small actor. Otherwise, if a function returning the
relative probability of an output signal depends on the number of output signals, you need to
calculate in some way the mean nominal number of output signals and set that number for the
small actor by the function qsmm_set_actor_nsig_ctrl. Because a large actor typically uses
Huffman trees with a fixed number of child nodes of every tree node, and qsmm_actor_create

sets this number as the mean nominal number of output signals of a small actor associated with
the large actor, you might not need to modify the mean nominal number of output signals for
the large actor.

If an array of output signal weights or a probability profile allows an actor to select only one
output signal, that is, if the array contains a single positive element, or a probability profile for
an action choice state contains a single positive probability of an output signal, then the best
will be not to call the functions qsmm_actor_shl_sig, qsmm_actor_reg_sig_in, and qsmm_

actor_reg_sig_action at all. In this case, you can perform the selection of an output signal
in a deterministic way (without using the actor) and shall not increment discrete time.

To calculate the mean nominal number of output signals, you can fetch the precomputed
nominal number of output signals for an action choice state from a probability profile if the
action choice state has the probability profile specified. You still need to store the nominal
number of output signals computed in advance in the profile. Use the following function to fetch
the precomputed nominal number of output signals from the probability profile of an action
choice state and to obtain an output signal if the profile specifies the deterministic selection of
this output signal.

[Function]int qsmm_get_actor_profile_nsig_ctrl (qsmm actor t actor, int
*nsig_pos_p, double *nsig_ctrl_p, qsmm sig t *sig_out_p)

This function retrieves information from the statistics storage of an actor about a probability
profile for a current action choice state encoded by the buffer for an n-gram of signals from
the event history.

If nsig pos p is not NULL, the function sets *nsig pos p to the number of output signals with
positive profile probabilities; the actor can emit one of those output signals in its current
action choice state. If nsig pos p is not NULL, and the current action choice state does not
have a probability profile specified, the function sets *nsig pos p to 0.

If nsig ctrl p is not NULL, the function sets *nsig ctrl p to the nominal number of output
signals the actor can emit in its current action choice state. If nsig ctrl p is not NULL, and
the current action choice state does not have a probability profile specified, the function sets
*nsig ctrl p to 0.

If the probability profile allows an actor to emit only one output signal, the function sets
*nsig pos p to 1 (if nsig pos p is not NULL), *nsig ctrl p to 1 (if nsig ctrl p is not NULL),
and *sig out p to this output signal (if sig out p is not NULL). If sig out p is not NULL, and
the current action choice state does not have a probability profile specified, or the probability
profile defines nondeterministic selection of an output signal, the function sets *sig out p to
QSMM_SIG_INVALID.

Chapter 2: Adaptive Probabilistic Mapping 57

See Section 3.2 [Structures for Accessing Storage], page 79, for how to pass the number of
output signals with positive profile probabilities, the nominal number of output signals, and
an output signal to emit deterministically (if it exists) to storage access functions to write
them to statistics storage with a handle obtained by the function qsmm_get_actor_storage

to be able to retrieve those parameters later by the function qsmm_get_actor_profile_

nsig_ctrl.

If the current action choice state has a probability profile specified, the function returns a
positive value. If the current action choice state does not have a probability profile specified,
the function returns 0.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NGRAM

The buffer does not encode a valid action choice state. To determine the validity
of an action choice state, the function checks the content of the buffer for accor-
dance with allowed ranges of signal identifiers specified by the field range_sig_p

of qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_STORAGE

Statistics storage failure. See Section 3.7 [Getting the Reason of a Storage Fail-
ure], page 95, for how to get an error message describing the failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state detected.

QSMM_ERR_ILSEQ

A statistics storage access function generated an error message but cannot convert
it to a wide string according to a current locale, or a storage redirection function
reported QSMM_ERR_ILSEQ.

QSMM_ERR_NOMEM

A statistics storage access function reported out of memory error.

2.6.6 Actor Temperature

In all relative probability function formulas mentioned in Section 2.6.1 [Relative Probability
Function Types], page 49, T denotes actor temperature multiplied by some constant. Actor
temperature is a concept that follows from the use of exponential forms for the relative prob-
ability function resembling formulas related to the Boltzmann distribution. In most relative
probability function formulas, actor temperature is a divisor of every spur weight.

The perfect relative probability function is the one that makes it possible for an actor to
generate most optimal behavior without the need to tune up actor temperature by hand. That
is, for such function, you would always use default temperature equal to 1. If the function
is imperfect, its application is not intended one, or when applying the simulated annealing
approach for solving a problem, use the following API functions to adjust the temperature of an
actor for producing more optimal behavior.

[Function]double qsmm_get_actor_ktemperature (qsmm actor t actor)
This function returns the temperature (multiplied by some constant) of an actor. If the actor
is the large one, the function returns the temperature of a small actor associated with the
large actor. A returned value is always finite and positive.

[Function]int qsmm_set_actor_ktemperature (qsmm actor t actor, double val)
This function sets the temperature (multiplied by some constant) of an actor to val. If the
actor is the large one, the function sets the temperature of a small actor associated with the
large actor.

Chapter 2: Adaptive Probabilistic Mapping 58

On success, the function returns a non-negative value. If val is not a finite or positive number,
the function returns negative error code QSMM_ERR_INVAL.

The function qsmm_actor_create initializes the temperature (multiplied by some constant)
of a newly created actor to 1.

2.7 Specifying Output Signal Weights

The weight of an output signal of an actor is a coefficient for multiplying the probability of
selecting this output signal by the actor. The coefficient is a hint—it increases or decreases that
probability. To disable emitting an output signal, set its weight equal to 0.

In the simplest case, the actor uses the weight of an output signal when selecting the output
signal in all action choice states. On binding the weight to a specific action choice state, the
actor uses that weight when selecting the output signal only in this action choice state.

Large actors do not support setting the weight of an output signal for all action choice states
at once. However, all actors support binding output signal weights to specific action choice
states.

A preloaded probability profile is a prepared list of output signal weights loaded into an
actor. You can assign the preloaded probability profile to specific action choice states for setting
output signal weights for those action choice states.

For a small actor, you can also bind output signal weights to an action choice state by
specifying a probability profile for the action choice state held in the statistics storage of this
small actor. See Section 3.2 [Structures for Accessing Storage], page 79, for how to pass profile
probabilities to storage access functions to write them to statistics storage.

It is essential to note that by reasons described in Section 2.6.5 [Number of Output Signals],
page 55, changing the default weights of output signals of a small actor, in general, makes its
behavior ill-defined. Therefore, you should avoid doing that. Changing the weights seems to be
a correct procedure only for a large actor, because this procedure does not alter the number of
choice alternatives at decision points along the pathways to output signals.

2.7.1 Setting a Weight for an Output Signal

Small actors support setting the weight of an output signal for all possible action choice states at
once. The functions qsmm_get_actor_sig_weight and qsmm_set_actor_sig_weight described
below can inspect or modify the array of weights of output signals of a small actor. A large
actor does not support setting the weight of an output signal for all possible action choice states
at once and does not use that array.

The function qsmm_actor_create initializes to 1 the weights of all output signals of a newly
created small actor in the array. If an output signal of a small actor has a profile probability
specified for an action choice state in statistics storage, the overall weight of this output signal
is the product of a corresponding weight in the array and the profile probability.

The function qsmm_actor_calc_action_prob always applies weights contained in the array
to computed relative probabilities, disregarding of a requested type of probabilities to calculate.
After multiplying computed relative probabilities by corresponding weights, qsmm_actor_calc_
action_prob normalizes a resulting array to obtain probabilities that sum up to 1.

[Function]int qsmm_get_actor_sig_weight (qsmm actor t actor, qsmm sig t
sig, double *weight_p)

This function sets *weight p to the weight of output signal sig of an actor. If weight p is
NULL, the function does not set *weight p. Otherwise, *weight p is a finite and non-negative
number.

Chapter 2: Adaptive Probabilistic Mapping 59

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

Signal sig is not an output signal of the actor.

QSMM_ERR_NOTSUP

The actor is the large one.

[Function]int qsmm_set_actor_sig_weight (qsmm actor t actor, qsmm sig t
sig, double weight)

This function sets the weight of output signal sig of an actor to weight.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

Signal sig is not an output signal of the actor, or weight is not a finite number
or is a negative number.

QSMM_ERR_NOTSUP

The actor is the large one.

2.7.2 Preloading a Probability Profile

A list of probabilities in normal form and a one-to-one correspondence between the elements
of this list and the identifiers of output signals define a preloaded probability profile for an
action choice state. This one-to-one correspondence is a permutation of output signals. The
purpose of splitting a preloaded probability profile into a probabilities list in normal form and a
permutation of output signals is to reduce the memory footprint of an actor, especially of large
one.

For a small actor, the normal form of a list of probabilities is simply a sorted list. For a large
actor, the normal form of a source list of probabilities is a resulting list of probabilities of leaves
of a Huffman tree created for a sorted source list. The indices of probabilities in the resulting
list are equal to the indices of corresponding probabilities in the sorted list. Note that resulting
probabilities following from the structure of a Huffman tree may differ from input probabilities
for creating the Huffman tree.

An actor has a pool of probabilities lists in normal form. The actor does not support removing
elements from the pool, except by destroying the actor using the function qsmm_actor_destroy.
The field profile_pool_sz of qsmm_actor_desc_s structure specifies the size of that pool when
creating the actor by the function qsmm_actor_create. You can retrieve that size later by the
function qsmm_get_actor_profile_pool_sz.

The pool contains unique probabilities lists in normal form. That is, for a large actor, to pool
elements there correspond Huffman trees with unique positional arrangements of nodes. Even
when preloading a probability profile with a probabilities list in normal form already contained
in the pool, the actor creates a temporary Huffman tree to obtain a normal form. The temporary
Huffman tree takes up one element in the pool, and, therefore, pool size should generally be
greater by 1 than the number of unique probabilities lists in normal form you need to load into
the pool.

An actor also has a pool of permutations of output signals. The pool contains unique per-
mutations. As opposed to the pool of probabilities lists in normal form with size specified when
creating the actor, the pool of permutations of output signals grows dynamically, and you do
not need to specify its size in advance. The actor does not support removing the permutations
of output signals from the pool, except by destroying the actor using qsmm_actor_destroy.

Use the following function to split a list of weights of output signals of an actor into a unique
probabilities list in normal form and a unique permutation of output signals.

Chapter 2: Adaptive Probabilistic Mapping 60

[Function]int qsmm_actor_profile_add (qsmm actor t actor, qsmm sig t
sig_beg, qsmm sig t sig_end, const double *weight_p, int *profile_p, int
*permut_p)

This function preloads a list of weights of output signals into an actor. The array weight p
contains the weights. If weight p is NULL, the function interprets this condition as if the array
weight p contains all weights equal to 1.

The arguments sig beg and sig end can be both zero or may specify the identifiers of the
first signal (inclusive) and last signal (exclusive) for the list of weights. The weight of the
first signal of that list has offset sig beg in the array weight p. If sig end is 0, the function
uses the total number of actor signals for the identifier of last signal. The function ignores
weight p elements that do not correspond to output signals.

If profile p is not NULL, the function sets *profile p equal to a non-negative index of a unique
probabilities list in normal form for the list of weights. This index identifies either a unique
probabilities list in normal form just added to the pool of those lists or such a list already
contained in the pool. The length of the unique probabilities list in normal form is equal to
the number of positive elements in the array weight p for output signals in the range specified
by sig beg and sig end.

If permut p is not NULL, the function sets *permut p equal to a non-negative index of a
unique permutation of output signals for the list of weights. This index identifies either a
unique permutation of output signals just added to the pool of those permutations or such a
permutation already contained in the pool. The length of the unique permutation of output
signals is equal to the length of the unique probabilities list in normal form.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument sig beg is greater than or equal to the identifier of last signal for
the list of weights, or the argument sig end is greater than the total number of
signals of the actor.

QSMM_ERR_WEIGHT

The array weight p contains a negative or non-finite element for an output signal
in the range specified by sig beg and sig end.

QSMM_ERR_INFIN

The array weight p contains only finite elements for output signals in the range
specified by sig beg and sig end, but the sum of elements is infinite.

QSMM_ERR_NOCHOICE

The array weight p does not contain at least one positive element for output
signals in the range specified by sig beg and sig end.

QSMM_ERR_MPROF

No room in the pool of probabilities lists in normal form with size specified in
the field profile_pool_sz of qsmm_actor_desc_s structure when creating the
actor.

QSMM_ERR_STORAGE

Failure of statistics storage of a large actor. See Section 3.7 [Getting the Reason
of a Storage Failure], page 95, for how to get an error message describing the
failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected for a large
actor.

Chapter 2: Adaptive Probabilistic Mapping 61

QSMM_ERR_ILSEQ

For a large actor, a generated error message is not convertible to a wide string
according to a current locale, or a storage redirection function reported QSMM_

ERR_ILSEQ.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The function qsmm_actor_profile_add may operate slowly, especially when building a Huff-
man tree for a large actor. To speed up preloading a number of probability profiles for the same
sorted list of output signal weights, you can perform the following procedure.

1. Preload the first probability profile by the function qsmm_actor_profile_add returning
the index of a probabilities list in normal form and the index of a permutation of output
signals identifying the preloaded profile.

2. For every other probability profile, sort its list of output signal weights (all profiles have
the same sorted list) to obtain a permutation of output signals. Actually, it is necessary to
sort a list of pairs comprised of a weight and an output signal identifier in ascending order
of weights.

3. Register every such permutation of output signals by the function qsmm_actor_permut_add

described below to obtain the index of a unique permutation of output signals. You can
use that index along with the index of a probabilities list in normal form obtained in step
1 to identify a preloaded probability profile other than the first one.

[Function]int qsmm_actor_permut_add (qsmm actor t actor, int sz, const
qsmm sig t *sig_p)

This function adds a permutation of output signals of an actor to the pool of those permu-
tations in the actor if that pool does not already contain the permutation. The array sig p
with length sz specifies that permutation. A set of signals in the permutation must be a
subset of output signals of the actor.

On success, the function returns a non-negative index of a permutation of output signals
just added to the pool or already contained in the pool. This index uniquely identifies the
permutation in the pool. On failure, the function returns a negative error code. Currently,
the function can return the following error codes.

QSMM_ERR_INVAL

The value of sz is less than 1, or the array sig p contains duplicate elements or
an element not equal to the identifier of an output signal of the actor.

QSMM_ERR_NOMEM

There was not enough memory to add the permutation of output signals to the
pool.

2.7.3 Assigning a Preloaded Probability Profile

You can assign a preloaded probability profile to a number of action choice states. Output signals
emittable in those action choice states will have weights defined by the preloaded probability
profile.

If the current action choice state is an action choice state with that preloaded probability
profile assigned, the function qsmm_actor_calc_action_prob called for a small actor applies
the weights by copying them from the preloaded probability profile to the array of output signal
weights accessible by the functions qsmm_get_actor_sig_weight and qsmm_set_actor_sig_

weight.

For a large actor, the function qsmm_get_actor_sig_action uses a Huffman tree defined by
the preloaded probability profile to select an output signal in an action choice state with that
preloaded probability profile assigned.

Chapter 2: Adaptive Probabilistic Mapping 62

The purpose of the following functions is to retrieve or set up a correspondence between an
action choice state and a preloaded probability profile.

[Function]int qsmm_get_actor_ngram_profile (qsmm actor t actor, int rez1,
int *profile_p, int *permut_p, const qsmm sig t *sig_ngram_p)

This function retrieves a correspondence between an action choice state of an actor and a
preloaded probability profile. A probabilities list in normal form and a permutation of output
signals define the preloaded probability profile. The array sig ngram p with length specified
in the field ngram_sz of qsmm_actor_desc_s structure when creating the actor encodes the
action choice state. The argument rez1 is for future use and must be equal to 0.

If profile p is not NULL, the function sets *profile p equal to the index of a probabilities list in
normal form for the preloaded probability profile. If permut p is not NULL, the function sets
*permut p equal to the index of a permutation of output signals for the preloaded probability
profile. If the function sets *profile p and *permut p to −1, this is an indication that the
action choice state has default output signal weights. For a small actor, default output
signal weights are all equal. For a large actor, default output signal weights following from
the structure of a default Huffman tree are equal only if the number of output signals is a
positive integer power of tree arity.

On success, the function returns a non-negative value. If the array sig ngram p does not
encode a valid action choice state, the function returns negative error code QSMM_ERR_NGRAM.

[Function]int qsmm_set_actor_ngram_profile (qsmm actor t actor, int rez1,
int profile, int permut, const qsmm sig t *sig_ngram_p)

This function sets up a correspondence between an action choice state of an actor and a
preloaded probability profile. A probabilities list in normal form and a permutation of output
signals define the preloaded probability profile. The argument profile specifies the index
of this probabilities list in normal form. The argument permut specifies the index of this
permutation of output signals. The array sig ngram p with length specified in the field
ngram_sz of qsmm_actor_desc_s structure when creating the actor encodes the action choice
state. The argument rez1 is for future use and must be equal to 0.

A special combination of profile and permut both equal to −1 is an indication to assign
default output signal weights to the action choice state. For a small actor, default output
signal weights are all equal. For a large actor, default output signal weights following from
the structure of a default Huffman tree are equal only if the number of output signals is a
positive integer power of tree arity.

The function keeps intact statistics collected for the action choice state and held in statistics
storage with a handle retrievable by the function qsmm_get_actor_storage for the actor.
However, for a large actor, the function qsmm_set_actor_ngram_profile destroys the Huff-
man tree of the action choice state encoded by sig ngram p. That Huffman tree holds the
other part of statistics collected for the action choice state.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument profile is not a valid index of a probabilities list in normal form, or
the argument permut is not a valid index of a permutation of output signals, and,
at the same time, profile and permut are not both equal to −1, or the length of
a probabilities list in normal form specified by profile is not equal to the length
of a permutation of output signals specified by permut.

QSMM_ERR_NGRAM

The array sig ngram p does not encode a valid action choice state. To determine
the validity of an action choice state, the function checks that array for accordance

Chapter 2: Adaptive Probabilistic Mapping 63

with allowed ranges of signal identifiers specified by the field range_sig_p of
qsmm_actor_desc_s structure when creating the actor.

QSMM_ERR_NOTSUP

For a small actor, the number of possible action choice states calculated on the
basis of allowed ranges of signal identifiers specified by the field range_sig_p of
qsmm_actor_desc_s structure when creating the actor is too large.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation. This error can leave
the actor in inconsistent state. If after removing a reason of this error a repeated
call to this function succeeds, the actor’s state becomes consistent.

2.8 Automatic Spur

Automatic spur is a means to implement the idea that an intrinsic feature of an intelligent
system is adherence to the principle of minimum energy (or maximum probability). The use of
automatic spur may substantially increase the optimality of output signals an actor emits. The
automatic spur also makes it possible to use the actor in cases when there are no explicit spur
increments supplied to it.

The automatic spur is useful when the actor models a finite automaton. In this case, the
output signals of the actor represent its internal states, that is, finite automaton states, and
each action choice state is a superposition of the previous internal state and an input signal
received when the actor was in that previous internal state. The automatic spur is a measure
of adequacy of a model of internal states to a sequence of input signals received.

In QSMM, a common approach to building a model of internal states of an entity to solve
a problem is the use of a spur scheme with two spur types for inhibitory (negative) spur and
excitatory (positive) spur countervailing each other. The inhibitory spur is the automatic spur
typically with a normal way of perception. The excitatory spur is specific to the problem to
solve.

If an actor uses the automatic spur, it is equal to the sum of automatic spur increments
calculated by the function qsmm_actor_reg_sig_in for action choice states that have prior
occurrences in the event history. For such an action choice state, qsmm_actor_reg_sig_in

knows an output signal emitted at the previous occurrence of this action choice state. Note that
for the last occurrence, an output signal emitted in the action choice state is not yet known in
qsmm_actor_reg_sig_in.

The actor calculates an automatic spur increment for a pair representing the logical con-
sequence h → z and consisting of an action choice state h and an output signal z emitted in
this action choice state. The automatic spur increment is equal to the natural logarithm of the
probability of occurrence of this pair in the event history:

ln
ν(h,z)

Kt0
.

This formula uses the following notations:

v(h,z) The number of occurrences of the pair in the event history.

t0 The discrete time of the previous occurrence of the pair in the event history. The
function qsmm_actor_reg_sig_action records that time.

0<K<=1 The mean number of output signals emitted per one unit of discrete time passed.

If an actor uses a single spur type, and it corresponds to the automatic spur, it is better
to set the type of a relative probability function for the actor to QSMM_RELPROB_BUILTIN2 or

Chapter 2: Adaptive Probabilistic Mapping 64

QSMM_RELPROB_BUILTIN3. However, it is also better to use the automatic spur in conjunction
with the other countervailing spur evaluating progress in solving a problem in some other way.

Use the functions described below to query or set a spur type for the automatic spur. By
default, an actor created by the function qsmm_actor_create does not use the automatic spur,
except that an implicitly created small actor associated with the large actor uses it.

[Function]int qsmm_get_actor_auto_spur_type (qsmm actor t actor)
This function returns the non-negative index of a spur type for automatic spur used by an
actor or negative error code QSMM_ERR_NOTFOUND if the actor does not use the automatic
spur.

[Function]int qsmm_set_actor_auto_spur_type (qsmm actor t actor, int
spur_type)

This function sets to spur type the spur type for the automatic spur of an actor. Spur types
have zero-based indices. If spur type is equal to −1, the actor does not use the automatic
spur; this condition does not affect the use of the automatic spur by a small actor associated
with the large actor.

On success, the function returns a non-negative value. If spur type is less than −1 or is
greater than or equal to the number of spur types specified in the field nspur of qsmm_
actor_desc_s structure when creating the actor, the function returns negative error code
QSMM_ERR_INVAL.

Use the functions qsmm_get_actor_naction_per_evt and qsmm_set_actor_naction_per_

evt to query and set the value of K.

A small actor can use at most one spur type for the automatic spur. The functions qsmm_get_
actor_auto_spur_type and qsmm_set_actor_auto_spur_type called for a small actor query
and set the index of a spur type for that automatic spur.

A large actor can use at most two spur types for the automatic spur. A small actor associated
with the large actor can use the automatic spur of the first type—increment it for action choice
states occurring in the event history of this small actor. Those action choice states represent
Huffman tree nodes traversed to generate output signals by the large actor. The large actor itself
can use the automatic spur of the second type—increment it for action choice states occurring
in the event history of that large actor. The functions qsmm_get_actor_auto_spur_type and
qsmm_set_actor_auto_spur_type called for a large actor query and set the index of a spur
type for the latter automatic spur.

Historically, the function qsmm_actor_create creates a large actor with the automatic spur
of the first type turned on by default. You may want to turn it off and make the large actor use
the automatic spur of the second type instead. To turn off the use of the automatic spur of the
first type by a large actor actor large, write:

qsmm_set_actor_auto_spur_type(

qsmm_get_actpair_actor_env(

qsmm_get_actpair(qsmm_get_actor_large_model(actor_large))),

-1)

To conserve memory, you can reuse a spur type for the automatic spur of the first type for
another purpose. For a small actor associated with the large actor, this spur type has index 0.
By default, the small actor uses discrete time to compute spur increment velocity for this spur
type. For the large actor, this spur type has special index −1.

2.9 Switching Adaptive or Random Behavior

An actor uses a random number generator to select a signal from a set of possible signals
according to their relative probabilities. The function qsmm_get_actor_sig_action performs

Chapter 2: Adaptive Probabilistic Mapping 65

this selection. The actor does not use the random number generator if there is only one signal
with a positive relative probability—the actor simply selects this signal.

For a small actor, qsmm_get_actor_sig_action selects an output signal based on the relative
probabilities of output signals previously calculated by the function qsmm_actor_calc_action_

prob. When selecting an output signal of a large actor, the function qsmm_get_actor_sig_

action indirectly calls itself a number of times for a small actor associated with the large actor.
As a consequence of this, the large actor traverses the Huffman tree of a current action choice
state and selects an output signal corresponding to one of tree leaves.

You can obtain a random number generator used by an actor—either provided when creating
the actor or an instance of a default random number generator allocated automatically if not
provided.

[Function]qsmm_rng_t qsmm_get_actor_rng (qsmm actor t actor)
This function returns a random number generator used by an actor to select output signals.
The function never returns NULL.

You typically use a returned random number generator to seed the generator after creating
the actor. See Section 6.1 [Random Number Generators], page 245, for how to seed a random
number generator and perform other operations on it.

A useful approach to determine the amount of contribution of an actor to the optimality
of behavior of a system is comparing a measure of optimality for this system with the actor
behaving adaptively versus a measure of optimality with the actor behaving randomly. The
greater the difference is between those values the more contribution the actor makes to the
overall optimality of system behavior.

Use the following functions to query the current mode of behavior of an actor and to switch
the actor to random or adaptive (normal) behavior mode.

[Function]int qsmm_get_actor_random (qsmm actor t actor)
This function returns a positive value if an actor is currently in random behavior mode or
zero if the actor is in adaptive (normal) behavior mode. The function never returns negative
values.

[Function]void qsmm_set_actor_random (qsmm actor t actor, int flag)
This function switches the current mode of behavior of an actor to random or adaptive
(normal) mode. If flag is non-zero, the function switches the current mode to random mode.
If flag is zero, the function switches the current mode to adaptive mode.

For a small actor, random and adaptive behavior modes affect how the function qsmm_actor_

calc_action_prob calculates probabilities of QSMM_PROB_AGGR or QSMM_PROB_LEARNED type.

In the random mode, qsmm_actor_calc_action_prob called for a small actor does not cal-
culate the relative probabilities of output signals in the normal way but uses output signal
weights for those relative probabilities. If the type of probabilities to calculate is QSMM_

PROB_AGGR, that function additionally applies a probability profile to those weights if the
probability profile exists in statistics storage for a current action choice state. Finally, the
function normalizes the resulting values.

For a large actor, random and adaptive behavior modes are actually the behavior modes of
a small actor associated with the large actor.

The function qsmm_actor_create initializes the current mode of behavior of a newly created
actor to adaptive (normal) mode.

Chapter 2: Adaptive Probabilistic Mapping 66

2.10 Revising Action Choice States

Revising action choice states includes enumerating and removing them. You may need to enu-
merate the action choice states of an actor to clear or update statistics on them. The following
function enumerates action choice states that have pieces of information stored in the memory
of an actor.

[Function]int qsmm_actor_enum_ngrams (qsmm actor t actor, int
ngram_prefix_sz, const qsmm sig t *sig_ngram_prefix_p,
qsmm enum ngram callback func t callback_func, void *paramp)

This function enumerates the lists of signal identifiers encoding action choice states that have
pieces of information stored in the memory of an actor. For a small actor, those action choice
states have pieces of information held in statistics storage with a handle retrievable by the
function qsmm_get_actor_storage. For a large actor, those action choice states are the
union of the following state sets:

– action choice states with assigned references to Huffman trees but without model nodes
yet created to store the instances of those trees;

– action choice states with model nodes already created to store the instances of Huffman
trees;

– action choice states that have pieces of information held in statistics storage with a
handle retrievable by qsmm_get_actor_storage for the large actor.

The function qsmm_actor_enum_ngrams enumerates the aforementioned action choice states
encoded by the lists of signal identifiers with a prefix sig ngram prefix p that has length
ngram prefix sz. If ngram prefix sz is 0, then sig ngram prefix p can be NULL.

The process of enumeration is repeated calling a callback function callback func. The callback
function receives a user parameter paramp and an array of signal identifiers encoding an
enumerated action choice state. If the callback function returns a positive value, qsmm_

actor_enum_ngrams continues the enumeration. If the callback function returns zero, qsmm_
actor_enum_ngrams terminates the enumeration and reports success. If the callback function
returns a negative value, qsmm_actor_enum_ngrams terminates the enumeration and reports
failure.

The function qsmm_actor_enum_ngrams does not support recursive calling from the callback
function for the same actor.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument ngram prefix sz is less than 0 or greater than the length of a list
of signal identifiers encoding an action choice state.

QSMM_ERR_CALLBACK

The callback function reported an error.

QSMM_ERR_STORAGE

Failure of statistics storage of a large actor. See Section 3.7 [Getting the Reason
of a Storage Failure], page 95, for how to get an error message describing the
failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected for a large
actor.

Chapter 2: Adaptive Probabilistic Mapping 67

QSMM_ERR_ILSEQ

For a large actor, a generated error message is not convertible to a wide string
according to a current locale, or a storage redirection function reported QSMM_

ERR_ILSEQ.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The type of a pointer to a callback function called for every enumerated action choice state
is below.

[Data type]qsmm_enum_ngram_callback_func_t
This is a type of a callback function pointer with the following declaration:

typedef int

(*qsmm_enum_ngram_callback_func_t)(

qsmm_actor_t actor,

const qsmm_sig_t *sig_ngram_p,

void *paramp

);

The function qsmm_actor_enum_ngrams calls the callback function for every enumerated ac-
tion choice state of an actor. The argument sig ngram p specifies an array of signal identifiers
encoding an action choice state. The length of this array is in the field ngram_sz of qsmm_
actor_desc_s structure passed to the function qsmm_actor_create when creating the actor.
You can retrieve that length later by the function qsmm_get_actor_ngram_sz. The argument
paramp is a user parameter passed to qsmm_actor_enum_ngrams.

The callback function shall return a positive value to continue the process of enumeration,
zero to terminate the process of enumeration, or a negative value on error.

Use the following function to remove information on an action choice state from the memory
of an actor.

[Function]int qsmm_actor_remove_ngram (qsmm actor t actor, const qsmm sig t
*sig_ngram_p)

This function removes information on an action choice state encoded by an array of signal
identifiers sig ngram p from the memory of an actor. The length of this array is in the
field ngram_sz of qsmm_actor_desc_s structure passed to the function qsmm_actor_create

when creating the actor. You can retrieve that length later by the function qsmm_get_actor_

ngram_sz.

For a small actor, the function removes information on the action choice state held in statistics
storage with a handle retrievable by the function qsmm_get_actor_storage. For a large
actor, the function removes the following pieces of information if they exist:

– a reference to a Huffman tree assigned to the action choice state;

– a model node holding an instance of a Huffman tree assigned to the action choice state;

– information on the action choice state held in statistics storage with a handle retrievable
by the function qsmm_get_actor_storage for the large actor.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NGRAM

The array sig ngram p does not encode a valid action choice state. To determine
the validity of an action choice state, the function checks that array for accordance
with allowed ranges of signal identifiers specified by the field range_sig_p of
qsmm_actor_desc_s structure when creating the actor.

Chapter 2: Adaptive Probabilistic Mapping 68

QSMM_ERR_NOTFOUND

No information on the action choice state—nothing to remove.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation for a large actor. This
error can leave the large actor in inconsistent state. If after removing a reason
of this error a repeated call to this function succeeds, or the function reports
QSMM_ERR_NOTFOUND, the actor’s state becomes consistent.

Chapter 2: Adaptive Probabilistic Mapping 69

2.11 Example of Using the Actor API

In the example of using the Actor API, an agent controlled by a sample program has to find a
short path to gold located in a labyrinth and then to an exit from the labyrinth. The source code
of the sample program contains the picture of that labyrinth encoded using a subset of ASCII

characters resembling pseudographics. You can change that picture to test agent behavior for
various labyrinth configurations.

To find a resulting path, the agent visits the labyrinth the number of times defined by the
macro NVISIT. Moving the agent to a cell designated as a labyrinth exit finishes a labyrinth
visit. A custom function returning the relative probability of an output signal is the exponent of
an expression equal to mean spur increment for a cycle type divided by actor temperature. The
sample program uses a simulated annealing approach, where actor temperature gradually de-
creases with every subsequent labyrinth visit. The macro KT_0 defines initial actor temperature,
and the macro KT_1 defines final temperature.

At last labyrinth visit, the sample program shows the picture of the labyrinth and agent
movements in it, prints an indication whether the agent took the gold, and displays the current
length of a visiting path. After finishing the last visit, a user can press Q to create the files
labyr_0.asy and labyr_1.asy, print the number of labyrinth visits when the agent took the
gold, and exit the sample program. Those two files correspond to the case before taking the
gold by the agent and the case after taking the gold respectively. Each file includes the file
labyr.asy and represents a labyrinth picture containing the following information:

– an upward triangle indicating an entry to the labyrinth;

– one or more downward triangles indicating exits from the labyrinth;

– one or more circles indicating the gold;

– black cells indicating places never visited by the agent;

– other cells with gray scale backgrounds indicating visited places, where the backgrounds
are darker for greater visiting frequencies;

– for the file labyr_0.asy, indicated by arrows learned gradients of movements to a cell with
the gold;

– for the file labyr_1.asy, indicated by arrows learned gradients of movements to an exit
cell after taking the gold;

– cells on the last visiting path contain thick arrows.

To process both files by Asymptote and produce the image files labyr_0.png and labyr_

1.png, use the commands:

asy -f png labyr_0.asy

asy -f png labyr_1.asy

You can specify a random seed by a program argument. If the random seed is non-negative,
the actor operates adaptively (normally). If the random seed is negative, the actor operates
randomly. You can compare agent behavior and resulting files labyr_0.png and labyr_1.png

for these two modes of program execution.

Chapter 2: Adaptive Probabilistic Mapping 70

For example, after executing the command

./labyr2 1

the file labyr_0.png produced from labyr_0.asy contains the image

Figure 2.6: image labyr_0.png produced from labyr_0.asy

and the file labyr_1.png produced from labyr_1.asy contains the image

Figure 2.7: image labyr_1.png produced from labyr_1.asy

In the source code of the sample program, each labyrinth cell is a rectangle 4x3 (WxH).
The picture of a labyrinth cell is represented in Figure 2.8. Adjacent cells have common border
columns or rows. For adjacent cells located vertically, row 2 of an upper cell and row 0 of a

Chapter 2: Adaptive Probabilistic Mapping 71

lower cell are the same rows. For adjacent cells located horizontally, column 3 of a left cell and
column 0 of a right cell are the same columns.

Figure 2.8: labyrinth cell

The macros MAX_X and MAX_Y define maximum zero-based coordinates of a labyrinth cell.
Thus, the labyrinth has (MAX_X+1)*3+1 character columns in width and (MAX_Y+1)*2+1 char-
acter rows in height. The macros ENTRY_X and ENTRY_Y define zero-based coordinates of the
entry cell of the labyrinth relative to its upper left corner.

Within a labyrinth cell, space characters denote allowed movement paths, and other char-
acters denote disallowed movement paths. Let us denote a character in column x and row y
of a labyrinth cell by <x,y>. If a cell is reachable from the labyrinth entry, then characters
<1,1> and <2,1> of the cell must be spaces; small circles denote them in the figure. If the cell
allows the agent to move to a left and/or right adjacent cell, then characters <0,1> and/or <3,1>
respectively must be spaces; left and right arrows denote them in the figure. If the cell allows
the agent to move to an upper adjacent cell, then characters <1,0> and <2,0> must be spaces;
up arrows denote them in the figure. If the cell allows the agent to move to a lower adjacent
cell, then characters <1,2> and <2,2> must be spaces; down arrows denote them in the figure.

If characters <0,0>, <3,0>, <0,2>, and <3,2> of a cell are the characters ‘*’, the cell contains
gold. If there are multiple such cells, visiting any of them means taking the gold. It is in a
single copy per labyrinth visit—if there are multiple cells with the gold, visiting any of them
implicitly removes it from the others until the next labyrinth visit. If characters at the cell
corners are the characters ‘#’, the cell is a labyrinth exit. A labyrinth can have more than one
exit. When modifying the picture of a labyrinth, make sure that its cells are properly aligned
and connected, and there are no paths outside of the labyrinth—violating these rules leads to
undefined program behavior.

The file samples/labyr2.c in the package distribution provides the source code of this sample
program. Below is a copy of that source code. The command make builds the sample program
if the configure script has configured QSMM to use the ncurses library. See the file INSTALL

in the root of the package distribution for information on the configure script.
#include <assert.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#if defined(HAVE_CURSES_H)

include <curses.h>

#elif defined(HAVE_NCURSES_CURSES_H)

include <ncurses/curses.h>

#endif

#include <qsmm/qsmm.h>

#define NVISIT 200

Chapter 2: Adaptive Probabilistic Mapping 72

#define MAX_X 14

#define MAX_Y 14

#define ENTRY_X 0

#define ENTRY_Y 14

#define NSIG_IN (MAX_X+1>MAX_Y+1?MAX_X+1:MAX_Y+1)

#define KT_0 (NVISIT*2)

#define KT_1 (1.0/KT_0)

#define CHK_FAIL(func, ...) \

do { \

const int rc=func(__VA_ARGS__); \

if (rc<0) { \

fprintf(stderr, #func ": %s\n", qsmm_err_str(rc)); \

goto Exit; \

} \

} \

while (0)

#define ERREXIT(fmt, ...) \

do { \

fprintf(stderr,fmt "\n", ## __VA_ARGS__); \

goto Exit; \

} \

while (0)

enum direct_e {

DIRECT_NORTH, // move one step up

DIRECT_EAST, // move one step right

DIRECT_SOUTH, // move one step down

DIRECT_WEST, // move one step left

DIRECT_COUNT // number of movement directions

};

static char last_path[2][MAX_Y+1][MAX_X+1];

static long fq_max[3], state_fq[3][MAX_Y+1][MAX_X+1];

static qsmm_actor_t actor=0;

// Generate an Asymptote file containing a picture of the labyrinth with

// learned movement gradients for the cases when the gold was or was not

// taken.

// Returns: 0 = success;

// -1 = failure.

static int

create_pic(

const char **pic_pp,

char is_gf

) {

char fln[]="labyr_?.asy";

int ii, result=-1;

fln[6]=is_gf?’1’:’0’;

FILE *const filep=fopen(fln,"w");

if (!filep) ERREXIT("%s: failed to open the file for writing",fln);

fprintf(filep,"import labyr;\n\n");

fprintf(filep,"set_dims(%d,%d);\n",MAX_X,MAX_Y);

qsmm_sig_t *const sig_ngram_p=qsmm_get_actor_sig_ngram(actor);

sig_ngram_p[0]=is_gf;

for (int yy=0; yy<=MAX_Y; yy++)

for (int xx=0; xx<=MAX_X; xx++) {

if (state_fq[2][yy][xx]<1) {

Chapter 2: Adaptive Probabilistic Mapping 73

fprintf(filep,"black_box(%d,%d);\n",xx,yy);

continue;

}

fprintf(filep, "fill_box(%d,%d,%.2f);\n",

xx, yy, (double) state_fq[(int) is_gf][yy][xx]/

fq_max[(int) is_gf]);

const int row=yy*2, col=xx*3;

for (const char *ccp="#*"; *ccp; ccp++)

if (pic_pp[row][col]==*ccp && pic_pp[row][col+3]==*ccp &&

pic_pp[row+2][col+3]==*ccp && pic_pp[row+2][col]==*ccp)

fprintf(filep, "%s(%d,%d);\n",

*ccp==’#’?"exit":"gold", xx, yy);

sig_ngram_p[1]=xx;

sig_ngram_p[2]=yy;

CHK_FAIL(qsmm_actor_calc_action_prob, actor,

0, NSIG_IN, NSIG_IN+DIRECT_COUNT, QSMM_PROB_LEARNED);

const double *const prob_p=

qsmm_get_actor_choice_sig_prob(actor);

double prob_max=0, ww[DIRECT_COUNT];

for (ii=0; ii<DIRECT_COUNT; ii++) {

const double prob=prob_p[NSIG_IN+ii];

if (prob_max<prob) prob_max=prob;

ww[ii]=prob;

}

for (ii=0; ii<DIRECT_COUNT; ii++) ww[ii]/=prob_max;

fprintf(filep, "arrows(%s,%d,%d,%.2f,%.2f,%.2f,%.2f);\n",

last_path[(int) is_gf][yy][xx]?"true":"false",

xx, yy, ww[0], ww[1], ww[2], ww[3]);

qsmm_actor_choice_sig_prob_release(actor);

}

fprintf(filep,"entry(%d,%d);\n",ENTRY_X,ENTRY_Y);

if (ferror(filep)) ERREXIT("%s: failed to write to the file",fln);

result=0;

Exit:

if (filep) fclose(filep);

return result;

}

// Make a movement in the labyrinth in a specified direction possibly

// showing the movement on the screen.

// Returns: 3 = movement resulted in exiting the labyrinth;

// 2 = movement resulted in taking the gold;

// 1 = movement made successfully;

// 0 = cannot make the movement because a new location cell of the

// agent is not empty.

static int

opaque_maze(

enum direct_e direct

) {

Chapter 2: Adaptive Probabilistic Mapping 74

static const char *picture[]={

// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

"+--------+-----+--------------------------#..#",

"| | | |", // 0

"| * * | | # #",

"| | | |", // 1

"| * * | | +-----+ |",

"| | | | | |", // 2

"| | | | | +-----+ |",

"| | | | | | | |", // 3

"| | | | | | | |",

"| | | | | | | |", // 4

"| +-----+ | | | | |",

"| | | | | |", // 5

"| | | | | |",

"| | | | | |", // 6

"| +-----------+ +-----+ | | |",

"| | | | | |", // 7

"| | | | | |",

"| | | | | |", // 8

"| +-----------+ +-----+ | | |",

"| | | | | |", // 9

"| | | | | |",

"| | | | | |", // 10

"+--------------+ | | +-----+ |",

"| | | | |", // 11

"| | | | |",

"| | | | |", // 12

"+--------------+ +-----+ +-----+ |",

"| | | |", // 13

"| | | |",

"| | | |", // 14

"+..+-----------------------------+-----+-----+"

};

static char is_gf=0;

static int path_len, visit=0, xx=-1, yy=-1;

int ii, col, row;

if (xx<0 || yy<0) {

if (visit==NVISIT-1) {

if (!initscr()) exit(2);

noecho();

for (row=0; row<(MAX_Y+1)*2+1; row++)

mvaddstr(row,0,picture[row]);

}

xx=ENTRY_X;

yy=ENTRY_Y;

path_len=0;

}

assert(xx>=0 && xx<=MAX_X);

assert(yy>=0 && yy<=MAX_Y);

if (visit==NVISIT-1) last_path[(int) is_gf][yy][xx]=1;

col=xx*3+1;

row=yy*2+1;

assert(picture[row][col]==’ ’ && picture[row][col+1]==’ ’);

assert((picture[row-1][col]==’ ’ && picture[row-1][col+1]==’ ’) ||

(picture[row-1][col]!=’ ’ && picture[row-1][col+1]!=’ ’));

assert((picture[row+1][col]==’ ’ && picture[row+1][col+1]==’ ’) ||

(picture[row+1][col]!=’ ’ && picture[row+1][col+1]!=’ ’));

switch (direct) {

case DIRECT_NORTH:

if (picture[row-1][col]!=’ ’ || picture[row-1][col+1]!=’ ’)

return 0;

yy--;

break;

case DIRECT_EAST:

Chapter 2: Adaptive Probabilistic Mapping 75

if (picture[row][col+2]!=’ ’) return 0;

xx++;

break;

case DIRECT_SOUTH:

if (picture[row+1][col]!=’ ’ || picture[row+1][col+1]!=’ ’)

return 0;

yy++;

break;

case DIRECT_WEST:

if (picture[row][col-1]!=’ ’) return 0;

xx--;

break;

default:

assert(0);

}

path_len++;

if (visit==NVISIT-1) mvaddstr(row,col," ");

col=xx*3+1;

row=yy*2+1;

state_fq[2][yy][xx]++;

state_fq[(int) is_gf][yy][xx]++;

for (ii=0; ii<3; ii++)

if (fq_max[ii]<state_fq[ii][yy][xx])

fq_max[ii]=state_fq[ii][yy][xx];

if (visit==NVISIT-1) {

char ss[64];

const int picture_w=strlen(picture[0]);

mvaddstr(row,col,"[]");

sprintf(ss," Gold found: %d",is_gf);

mvaddstr(1,picture_w+2,ss);

sprintf(ss,"Path length: %d",path_len);

mvaddstr(3,picture_w+2,ss);

move((MAX_Y+1)*2+3,0);

refresh();

usleep(125000);

}

int result=1;

for (const char *ccp="#*"; *ccp; ccp++)

if (picture[row-1][col-1]==*ccp && picture[row-1][col+2]==*ccp &&

picture[row+1][col-1]==*ccp && picture[row+1][col+2]==*ccp) {

if (*ccp==’#’) {

is_gf=0;

result=3;

xx=-1;

yy=-1;

if (visit==NVISIT-1) {

row=(MAX_Y+1)*2+3;

mvaddstr(row,0,"Press [Q] to exit");

while (1) {

int key=getch();

if (key==’q’ || key==’Q’) break;

}

for (ii=0; ii<2; ii++)

if (create_pic(picture,ii)<0) exit(2);

endwin();

}

else visit++;

}

else if (!is_gf) {

is_gf=1;

result=2;

}

break;

}

return result;

Chapter 2: Adaptive Probabilistic Mapping 76

}

// Helper function for computing the relative probability of an

// output signal.

static double

relprob_user2(

qsmm_actor_t actor,

qsmm_sig_t sig_cycle,

const struct qsmm_state_s *state_p,

const struct qsmm_cycle_s *cycle_p,

const struct qsmm_sspur_s *sspur_p,

const struct qsmm_cspur_s *cspur_p,

void *paramp

) {

const double period_sum_c=cycle_p->period_sum_c;

return (period_sum_c?cspur_p[0].delta_sum/period_sum_c:0)/

qsmm_get_actor_ktemperature(actor);

}

// Find a path to gold in the labyrinth and then to its exit.

int

main(

int argc,

char **argv

) {

int exit_code=1;

struct qsmm_pair_sig_s range_sig[3];

memset(range_sig,0,sizeof(range_sig));

range_sig[0].second=1;

range_sig[1].second=MAX_X;

range_sig[2].second=MAX_Y;

struct qsmm_actor_desc_s actor_desc;

memset(&actor_desc,0,sizeof(actor_desc));

actor_desc.nspur=1;

actor_desc.ngram_sz=3;

actor_desc.compat=1;

actor_desc.sig_spec_type=QSMM_ACTOR_SIG_SPEC_IN_OUT;

actor_desc.range_sig_p=range_sig;

struct qsmm_actor_sig_spec_in_out_s *const iop=&actor_desc.sig_spec.in_out;

iop->nsig_in=NSIG_IN;

iop->nsig_out=DIRECT_COUNT;

CHK_FAIL(qsmm_actor_create,&actor_desc,&actor);

qsmm_set_actor_relprob_type(actor,QSMM_RELPROB_USER2);

qsmm_set_actor_relprob_helper(actor,&relprob_user2,0);

const int seed=(argc>1?atoi(argv[1]):0);

if (seed<0) qsmm_set_actor_random(actor,1);

qsmm_rng_seed(qsmm_get_actor_rng(actor),abs(seed));

int n_gold_found=0;

const double mut=pow(KT_1/KT_0,1.0/NVISIT);

double ktemperature=KT_0;

for (int visit=0; visit<NVISIT; visit++) {

char is_gf=0;

int xx=ENTRY_X, yy=ENTRY_Y;

qsmm_sig_t sig_action=QSMM_SIG_INVALID;

CHK_FAIL(qsmm_set_actor_ktemperature,actor,ktemperature);

while (1) {

CHK_FAIL(qsmm_actor_shl_sig,actor,is_gf,0);

CHK_FAIL(qsmm_actor_shl_sig,actor,xx,0);

CHK_FAIL(qsmm_actor_reg_sig_in,actor,yy);

CHK_FAIL(qsmm_actor_calc_action_prob, actor,

0, NSIG_IN, NSIG_IN+DIRECT_COUNT, QSMM_PROB_LEARNED);

77

CHK_FAIL(qsmm_get_actor_sig_action, actor,

0, NSIG_IN, NSIG_IN+DIRECT_COUNT, &sig_action);

CHK_FAIL(qsmm_actor_reg_sig_action,actor,sig_action);

CHK_FAIL(qsmm_actor_time_delta,actor,1);

const enum direct_e direct=sig_action-NSIG_IN;

const int rc=opaque_maze(direct);

switch (rc) {

case 0:

continue;

case 1:

break;

case 2:

is_gf=1;

n_gold_found++;

break;

case 3:

if (is_gf) CHK_FAIL(qsmm_actor_spur_delta,actor,0,1);

break;

default:

assert(0);

}

if (rc==3) break;

switch (direct) {

case DIRECT_NORTH: yy--; break;

case DIRECT_EAST: xx++; break;

case DIRECT_SOUTH: yy++; break;

case DIRECT_WEST: xx--; break;

default: assert(0);

}

}

ktemperature*=mut;

}

printf("\nn_gold_found %d\n",n_gold_found);

exit_code=0;

Exit:

qsmm_actor_destroy(actor);

return exit_code;

}

78

3 Statistics Storage

Statistics storage holds information on action choice states and cycle types registered by an actor
throughout event history. Additionally, statistics storage can hold probability profiles assigned
to action choice states.

The function qsmm_actor_create creates statistics storage for an actor. The function qsmm_

actor_destroy destroys statistics storage for an actor. The field use_flat_storage of qsmm_
actor_desc_s structure passed to the function qsmm_actor_create when creating an actor
specifies the type of storage the actor will use—flat storage or map storage.

Storage API functions retrieve or store information on action choice states or cycle types via
data structures describing the condition of an action choice state, the condition of a spur type
for an action choice state, statistics on a cycle type, and statistics on a spur type for a cycle
type. Storage API functions provide means to query the number of spur types supported by
storage, to retrieve and store the condition of an action choice state and statistics on a cycle
type, to remove information on an action choice state from storage, and to enumerate action
choice states and cycle types that have information in storage.

Statistics storage supports setting redirection functions for altering the behavior of storage
access operations or intercepting them. Storage redirection functions for obtaining the initial
condition of an action choice state, the initial statistics of a cycle type, and the next cycle
direction for a cycle type make it possible to generate the probability profile of an action choice
state on demand. This approach helps reduce the initial memory footprint of a model and speed
up its preparation. QSMM uses those redirection functions internally to implement deferred
setting a probability profile for a number of nodes of a multinode model.

Specifying a storage redirection function to intercept updating cycle type statistics makes it
possible to organize keeping cycle type statistics for the tail of an event history rather than for
the entire event history.

3.1 Storage Types

QSMM supports two types of statistics storage: flat and map. You specify the type of statistics
storage of an actor using the field use_flat_storage of qsmm_actor_desc_s structure when
creating the actor by the function qsmm_actor_create.

Flat Storage

Flat storage uses preallocated arrays and does not perform memory allocation on writing statis-
tics to the storage. Therefore, the flat storage is fast but may require a huge amount of working
memory. To reduce the amount of memory occupied by the flat storage of an actor, specify
allowed ranges of signal identifiers in the field range_sig_p of qsmm_actor_desc_s structure as
precisely as possible when creating the actor by the function qsmm_actor_create.

Map Storage

Map storage uses binary trees to hold statistics and dynamically allocates working memory when
needed. When map storage does not hold probability profiles, it contains information on action
choice states and cycle types registered at least once throughout event history. In this case, at
the beginning of actor operation the storage occupies a small amount of memory. This amount
of memory gradually increases as the actor registers more action choice states and cycle types
the first time throughout the event history.

Map storage has two shortcomings. The first is that map storage is slower compared to flat
storage. The second is that when map storage holds statistics on all possible action choice states
and cycle types, it occupies much more memory than the flat storage would occupy. The second
shortcoming is not a hindrance, because not all possible action choice states and cycle types

Chapter 3: Statistics Storage 79

usually occur in the event history, and because the actor usually operates shorter time than it
is necessary for a large number of action choice states and cycle types to occur the first time in
the event history.

Storage Handle

A storage handle refers to flat or map storage.

[Data type]qsmm_storage_t
This is a type for a storage handle. It is a pointer, so variables of this type can be NULL.
The function qsmm_get_actor_storage returns the storage handle of an actor. You can
pass a returned handle to API functions taking an argument of qsmm_storage_t type until
destroying the actor.

Use the following function to query the number of spur types supported by storage referred
to by a storage handle.

[Function]int qsmm_get_storage_nspur (qsmm storage t storage)
This function returns the number of spur types supported by storage. The storage can hold
statistics for that number of spur types equal to the number of spur types supported by an
actor owning the storage. A returned value is always non-negative.

3.2 Structures for Accessing Storage

The following structure holds the condition of an action choice state.

[Structure]qsmm_state_s
This structure holds the condition of an action choice state h (see Section 2.6.1 [Relative
Probability Function Types], page 49, for formulas involving h). The structure contains the
following fields.

[Field]int nsig_pos
This field contains information on the number of cycle types <h,x> (i.e. starting at this
action choice state h) with positive profile probabilities assigned, where x is a possible
cycle direction. The meanings of various values of this field are below.

0 The action choice state does not have a probability profile specified.

i>1 The number i of types of cycles that start at this action choice state and have
positive profile probabilities assigned. At present, an actor uses that number
to determine whether to utilize ordinary vectors or sparse vectors to store the
relative probabilities of output signals.

i<0 Only one cycle type has a positive profile probability assigned, and −i−1 is
equal to the identifier x of an output signal only allowed by the probability
profile.

1 Disallowed and causes undefined behavior.

The default value is 0.

[Field]long tmd0
The discrete time of last occurrence of a cycle of <h,z> type throughout event history, where
the field sig_cycle_next of this structure specifies z. If the field tmd0 is non-negative,
and sig_cycle_next is not QSMM_SIG_INVALID, tmd0 indicates the discrete time of last
emitting output signal z in action choice state h. The function qsmm_actor_reg_sig_

action records that discrete time before incrementing it. The default value of this field is
−1.

Chapter 3: Statistics Storage 80

[Field]double tmc0
The continuous time of last occurrence of a cycle of <h,z> type throughout event his-
tory, where the field sig_cycle_next of this structure specifies z. That continuous time
corresponds to discrete time in the field tmd0 of this structure. If the field tmc0 is non-
negative, and sig_cycle_next is not QSMM_SIG_INVALID, tmc0 indicates the continuous
time of last emitting output signal z in action choice state h. The function qsmm_actor_

reg_sig_action records that continuous time. The default value of this field is −1.

[Field]double nsig_ctrl
The nominal number of output signals for the probability profile of this action choice state.
See Section 2.6.5 [Number of Output Signals], page 55, for the explanation of the concept
of the nominal number of output signals for an action choice state. If the field nsig_pos of
this structure is greater than 1, the field nsig_ctrl must be greater than 1 and less than
or equal to nsig_pos. If nsig_pos is 0, nsig_ctrl must be 0. If nsig_pos is negative,
nsig_ctrl must be 1. The default value of this field is 0.

[Field]qsmm_sig_t sig_cycle_next
An output signal indicating the direction of last cycle started at this action choice state.
If no cycles started at this action choice state yet, then QSMM_SIG_INVALID. The default
value is QSMM_SIG_INVALID.

The condition of an action choice state includes an array of instances of a structure holding
the value of spur recorded by the function qsmm_actor_reg_sig_action for last cycle started
at the action choice state. The number of elements in the array is equal to the number of spur
types supported by storage.

The structure contains only one field but is designed as a structure to simplify associating
other information with an action choice state and a spur type for research purposes. When
storage prepares an instance of that structure for first use, it initializes the instance with zeroes
by the function memset, so fields you may have added will initially be zero.

The structure description is below.

[Structure]qsmm_sspur_s
This structure holds condition associated with an action choice state and a spur type. The
structure contains the following field.

[Field]double val0
The value of spur recorded for last cycle started at the action choice state, that is, at the
latest time when the function qsmm_actor_reg_sig_action registered emitting an output
signal in that action choice state.

The following structure holds statistics on a cycle type.

[Structure]qsmm_cycle_s
This structure holds statistics on a cycle type—a pair comprised of an action choice state and
a cycle direction (i.e. an output signal emittable in the action choice state). In Section 2.6.3
[Spur Perception], page 53, the notation <h,z> is a cycle type for action choice state h and
cycle direction z. The structure contains the following fields.

[Field]long fq
The number of cycles of <h,z> type registered throughout event history.

[Field]long period_sum_d
The total length of cycles of <h,z> type measured in discrete time. In Section 2.6.3 [Spur
Perception], page 53, the notation w(h,z) is that total length measured in discrete or
continuous time.

Chapter 3: Statistics Storage 81

[Field]double period_sum_c
The total length of cycles of <h,z> type measured in continuous time. In Section 2.6.3
[Spur Perception], page 53, the notation w(h,z) is that total length measured in discrete
or continuous time.

[Field]double profile
A profile probability—weight to multiply the relative probability of output signal z se-
lectable in action choice state h. The function qsmm_actor_calc_action_prob uses this
field if the field nsig_pos of qsmm_state_s structure holding the condition of action choice
state h is non-zero. In this case, the sum of profile probabilities of all cycle types for action
choice state h must be equal to 1.

The statistics on a cycle type includes an array of instances of a structure holding the sum
of spur increments over cycles of this type. The number of elements in the array is equal to the
number of spur types supported by storage.

The structure contains only one field but is designed as a structure to simplify associating
other information with a cycle type and a spur type for research purposes. When storage
prepares an instance of that structure for first use, it initializes the instance with zeroes by the
function memset, so fields you may have added will initially be zero.

The structure description is below.

[Structure]qsmm_cspur_s
This structure holds statistics associated with cycle type <h,z> and spur type i. The structure
contains the following field.

[Field]double delta_sum
The sum of increments of spur of i type over cycles of <h,z> type throughout event history.
In Section 2.6.3 [Spur Perception], page 53, the notation H(h,z)[i] is that sum. Each spur
increment is the difference between a spur value at the time of cycle end and a spur value
at the time of cycle start stored in the field val0 of qsmm_sspur_s structure.

The time of cycle start is the time of an occurrence of action choice state h with emitting
output signal z. The time of cycle end is the time of the next occurrence of action choice
state h in the event history.

3.3 Retrieving and Storing Statistics

Use the following functions to retrieve or store the condition of an action choice state.

[Function]int qsmm_get_storage_state_stats (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p, struct qsmm state s *state_p,
struct qsmm sspur s *sspur_p)

This function retrieves from storage the condition of an action choice state encoded by an
array of signal identifiers sig ngram p holding ngram sz elements. If state p is not NULL,
the function copies the condition to *state p. If sspur p is not NULL, the function copies
conditions for all spur types associated with the action choice state to an array addressed
by sspur p. The array must be capable of holding the number of elements returned by the
function qsmm_get_storage_nspur.

If the storage does not contain the condition of the action choice state, and the storage has
a set redirection function for retrieving the initial condition of an action choice state, the
function qsmm_get_storage_state_stats calls this redirection function to obtain the initial
condition of the action choice state. When validating the field sig_cycle_next of qsmm_
state_s structure obtained by this redirection function, the function qsmm_get_storage_

state_stats may also call a redirection function for retrieving the initial statistics of a cycle

Chapter 3: Statistics Storage 82

type. See Section 3.5 [Providing Initial Statistics], page 89, for more information on those
redirection functions.

If the storage contained the condition of the action choice state, or the storage did not
contain the condition, but the redirection function has retrieved it, qsmm_get_storage_

state_stats returns a positive value. If the storage did not contain the condition, and the
redirection function has not retrieved it, qsmm_get_storage_state_stats returns 0 and the
constant default condition. On failure, qsmm_get_storage_state_stats returns a negative
error code. Currently, this function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

QSMM_ERR_STORAGE

The storage did not contain the condition of the action choice state, and a redi-
rection function called to obtain the initial condition of the action choice state
has reported QSMM_ERR_STORAGE or an unexpected error code, or the redirection
function succeeded, but the function qsmm_get_storage_cycle_stats called to
validate the field sig_cycle_next of qsmm_state_s structure obtained by that
redirection function has reported QSMM_ERR_STORAGE.

See Section 3.7 [Getting the Reason of a Storage Failure], page 95, for how to get
an error message describing the failure.

QSMM_ERR_STATS

A redirection function for retrieving the initial condition of an action choice state
reported QSMM_ERR_STATS, or condition retrieved by this redirection function is
inconsistent.

QSMM_ERR_ILSEQ

A redirection function for retrieving the initial condition of an action choice state
or the initial statistics of a cycle type reported QSMM_ERR_ILSEQ, or a generated
error message is not convertible to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_set_storage_state_stats (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p, const struct qsmm state s
*state_p, const struct qsmm sspur s *sspur_p)

This function writes to storage the condition of an action choice state encoded by an array of
signal identifiers sig ngram p holding ngram sz elements. If state p is not NULL, the function
copies the condition from *state p. If sspur p is not NULL, the function copies conditions for
all spur types associated with the action choice state from an array addressed by sspur p. The
function qsmm_get_storage_nspur returns the number of elements of sspur p array copied.

The function qsmm_set_storage_state_stats may call a redirection function for obtaining
the initial condition of an action choice state when adding information on it to the stor-
age. The function qsmm_set_storage_state_stats may also call a redirection function for
obtaining the initial statistics of a cycle type when validating the field sig_cycle_next of

Chapter 3: Statistics Storage 83

qsmm_state_s structure. See Section 3.5 [Providing Initial Statistics], page 89, for more
information on those redirection functions.

The function qsmm_set_storage_state_stats returns a non-negative value on success or a
negative error code on failure. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

QSMM_ERR_STORAGE

The function qsmm_get_storage_cycle_stats called to validate the field sig_

cycle_next of *state p or an instance of qsmm_state_s structure obtained by
a redirection function for retrieving the initial condition of an action choice
state reported QSMM_ERR_STORAGE, or the redirection function reported QSMM_

ERR_STORAGE or an unexpected error code.

See Section 3.7 [Getting the Reason of a Storage Failure], page 95, for how to get
an error message describing the failure.

QSMM_ERR_STATS

Inconsistent condition in *state p, or a redirection function for retrieving the
initial condition of an action choice state reported QSMM_ERR_STATS, or condition
retrieved by the redirection function is inconsistent.

Condition in qsmm_state_s is inconsistent in the following cases:

– nsig_pos is equal to 1;

– nsig_pos is negative, but -nsig_pos-1 is not an output signal of an actor
owning the storage;

– nsig_pos is greater than 1, but nsig_ctrl is less than or equal to 1 or
greater than nsig_pos;

– sig_cycle_next is not QSMM_SIG_INVALID but also not an output signal of
an actor owning the storage;

– sig_cycle_next is not QSMM_SIG_INVALID, and tmd0 is negative;

– sig_cycle_next is not QSMM_SIG_INVALID, and tmc0 is negative;

– sig_cycle_next is not QSMM_SIG_INVALID, nsig_pos is not 0, and the func-
tion qsmm_get_storage_cycle_stats called to check the presence of statis-
tics on a cycle type for the action choice state and cycle direction sig_

cycle_next returned 0 or reported QSMM_ERR_STATS.

QSMM_ERR_ILSEQ

A redirection function for retrieving the initial condition of an action choice state
or the initial statistics of a cycle type reported QSMM_ERR_ILSEQ, or a generated
error message is not convertible to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

On errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM, the
function may leave the condition of the action choice state updated in an unexpected way.

Chapter 3: Statistics Storage 84

To update the condition of an action choice state, you first need to retrieve existing condition
by the function qsmm_get_storage_state_stats, then change some fields, and, finally, store
the condition by the function qsmm_set_storage_state_stats. For example, you can update
the parameters of the probability profile of an action choice state to new values nsig_pos and
nsig_ctrl using a block of code like this:

int rc;

struct qsmm_state_s state;

if ((rc=

qsmm_get_storage_state_stats(storage, ngram_sz, sig_ngram_p,

&state, 0))<0)

REPORT_ERROR(rc);

state.nsig_pos=nsig_pos;

state.nsig_ctrl=nsig_ctrl;

if ((rc=

qsmm_set_storage_state_stats(storage, ngram_sz, sig_ngram_p,

&state, 0))<0)

REPORT_ERROR(rc);

Use the following functions to retrieve or store statistics on a cycle type.

[Function]int qsmm_get_storage_cycle_stats (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p, qsmm sig t sig_cycle, struct
qsmm cycle s *cycle_p, struct qsmm cspur s *cspur_p)

This function retrieves statistics on a cycle type from storage. An action choice state and
cycle direction sig cycle specify the cycle type. An array of signal identifiers sig ngram p
holding ngram sz elements encodes the action choice state.

If cycle p is not NULL, the function copies the statistics to *cycle p. If cspur p is not NULL, the
function copies statistics on all spur types associated with the cycle type to an array addressed
by cspur p. The array must be capable of holding the number of elements returned by the
function qsmm_get_storage_nspur.

If the storage does not contain statistics on the cycle type, and the storage has a set redirection
function for retrieving the initial statistics of a cycle type, the function qsmm_get_storage_

cycle_stats calls this redirection function to obtain initial statistics on the cycle type. See
Section 3.5 [Providing Initial Statistics], page 89, for more information on this redirection
function.

If the storage contained statistics on the cycle type, or the storage did not contain the
statistics, but the redirection function has retrieved it, qsmm_get_storage_cycle_stats

returns a positive value. If the storage did not contain the statistics, and the redirection
function has not retrieved it, qsmm_get_storage_cycle_stats returns 0 and zero statistics.
On failure, qsmm_get_storage_cycle_stats returns a negative error code. Currently, this
function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states, or signal sig cycle is not an output signal of an
actor owning the storage.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

Chapter 3: Statistics Storage 85

QSMM_ERR_STORAGE

The storage did not contain statistics on the cycle type, and a redirection func-
tion called to obtain initial statistics on the cycle type has reported QSMM_ERR_

STORAGE or an unexpected error code. See Section 3.7 [Getting the Reason of a
Storage Failure], page 95, for how to get an error message describing the failure.

QSMM_ERR_STATS

A redirection function for retrieving the initial statistics of a cycle type reported
QSMM_ERR_STATS, or statistics retrieved by this redirection function is inconsis-
tent.

QSMM_ERR_ILSEQ

A redirection function for retrieving the initial statistics of a cycle type reported
QSMM_ERR_ILSEQ, or a generated error message is not convertible to a wide string
according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_set_storage_cycle_stats (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p, qsmm sig t sig_cycle, const
struct qsmm cycle s *cycle_p, const struct qsmm cspur s *cspur_p)

This function writes statistics on a cycle type to storage. An action choice state and cycle
direction sig cycle specify the cycle type. An array of signal identifiers sig ngram p holding
ngram sz elements encodes the action choice state.

If cycle p is not NULL, the function copies the statistics from *cycle p. If cspur p is not
NULL, the function copies statistics for all spur types associated with the cycle type from an
array addressed by cspur p. The function qsmm_get_storage_nspur returns the number of
elements of cspur p array copied.

The function qsmm_set_storage_cycle_stats calls a redirection function for the intercep-
tion of updating statistics on a cycle type if the storage has such redirection function set.
See Section 3.6 [Intercepting the Updates of Cycle Type Statistics], page 93, for more in-
formation on this redirection function. The function qsmm_set_storage_cycle_stats may
call redirection functions for obtaining the initial condition of an action choice state or the
initial statistics of a cycle type when adding information on it to the storage. See Section 3.5
[Providing Initial Statistics], page 89, for more information on these redirection functions.

The function qsmm_set_storage_cycle_stats returns a non-negative value on success or a
negative error code on failure. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states, or signal sig cycle is not an output signal of an
actor owning the storage.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

QSMM_ERR_STORAGE

A storage redirection function reported QSMM_ERR_STORAGE or an unexpected
error code. See Section 3.7 [Getting the Reason of a Storage Failure], page 95,
for how to get an error message describing the failure.

Chapter 3: Statistics Storage 86

QSMM_ERR_STATS

Inconsistent statistics in *cycle p, or a storage redirection function reported
QSMM_ERR_STATS, or statistics obtained from a storage redirection function is
inconsistent.

Statistics in qsmm_cycle_s is inconsistent in the following cases:

– fq is negative;

– period_sum_d is negative;

– period_sum_c is negative;

– profile is negative or greater than 1;

– fq is zero, but period_sum_d is positive;

– fq is zero, but period_sum_c is positive.

QSMM_ERR_ILSEQ

A storage redirection function reported QSMM_ERR_ILSEQ, or a generated error
message is not convertible to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

On errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM, the
function may leave the condition of the action choice state or the statistics of the cycle type
updated in an unexpected way.

To update statistics on a cycle type, you first need to retrieve existing statistics by the func-
tion qsmm_get_storage_cycle_stats, then change some fields, and, finally, store the statistics
by the function qsmm_set_storage_cycle_stats. For example, you can update a profile prob-
ability1 for a cycle type to a new value profile using a block of code like this:

int rc;

struct qsmm_cycle_s cycle;

if ((rc=

qsmm_get_storage_cycle_stats(storage, ngram_sz, sig_ngram_p,

sig_cycle, &cycle, 0))<0)

REPORT_ERROR(rc);

cycle.profile=profile;

if ((rc=

qsmm_set_storage_cycle_stats(storage, ngram_sz, sig_ngram_p,

sig_cycle, &cycle, 0))<0)

REPORT_ERROR(rc);

At present, an actor uses storage to hold statistics on action choice states encoded by arrays
of signal identifiers with a fixed number of elements. The argument ngram_sz of Storage API

functions must be equal to this fixed length. In the future, storage may hold statistics on action
choice states encoded by arrays of signal identifiers with varying lengths, so that argument may
have multiple valid values.

Use the following function to remove information on an action choice state from storage.

[Function]int qsmm_storage_remove_state (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p)

This function removes from storage information on an action choice state encoded by an
array of signal identifiers sig ngram p holding ngram sz elements. The information includes

1 A profile probability does not fall into the category “statistics,” though the structure qsmm_cycle_s holds the
profile probability along with statistics on a cycle type.

Chapter 3: Statistics Storage 87

the condition of this action choice state and statistics on all types of cycles starting at the
action choice state. For map storage, the function frees memory allocated for holding that
information.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

QSMM_ERR_NOTFOUND

Information on the action choice state not found in the storage—nothing to
remove.

3.4 Enumerating Action Choice States and Cycle Types

Use the following function to enumerate action choice states that have pieces of information held
in storage.

[Function]int qsmm_storage_enum_states (qsmm storage t storage, int
ngram_prefix_sz, const qsmm sig t *sig_ngram_prefix_p,
qsmm enum state callback func t callback_func, void *paramp)

This function enumerates action choice states that have pieces of information held in storage.
The function enumerates action choice states encoded by lists of signal identifiers that have
a prefix sig ngram prefix p with length ngram prefix sz. If ngram prefix sz is 0, then
sig ngram prefix p can be NULL.

The process of enumeration is repeated calling a callback function callback func receiving
an array of signal identifiers encoding an action choice state and receiving a user parameter
paramp. If the callback function returns a positive value, the function qsmm_storage_enum_

states continues the enumeration. If the callback function returns zero, qsmm_storage_
enum_states terminates the enumeration and reports success. If the callback function re-
turns a negative value, qsmm_storage_enum_states terminates the enumeration and reports
failure.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument ngram prefix sz is less than 0 or greater than the length of a list
of signal identifiers encoding an action choice state.

QSMM_ERR_CALLBACK

The callback function reported an error.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The type of a pointer to a callback function called for every enumerated action choice state
is below.

Chapter 3: Statistics Storage 88

[Data type]qsmm_enum_state_callback_func_t
This is a type of a callback function pointer with the following declaration:

typedef int

(*qsmm_enum_state_callback_func_t)(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

void *paramp

);

The function qsmm_storage_enum_states calls the callback function for every enumerated
action choice state of storage. The argument sig ngram p specifies an array of signal iden-
tifiers encoding an action choice state. The argument ngram sz specifies the length of this
array. The argument paramp is a user parameter passed to qsmm_storage_enum_states.

The callback function shall return a positive value to continue the process of enumeration,
zero to terminate the process of enumeration, or a negative value on error.

Use a function described below to enumerate the types of cycles starting at an action choice
state. A cycle direction and the action choice state make up an enumerated cycle type.

[Function]int qsmm_get_storage_cycle_next (qsmm storage t storage, int
ngram_sz, const qsmm sig t *sig_ngram_p, qsmm sig t
*sig_cycle_next_p)

This function retrieves the next cycle type that has a piece of information held in storage. An
action choice state and a cycle direction specify the cycle type. An array of signal identifiers
sig ngram p holding ngram sz elements encodes the action choice state.

If *sig cycle next p is QSMM_SIG_INVALID, then on successful function completion,
*sig cycle next p will contain the first minimum cycle direction. If *sig cycle next p is not
QSMM_SIG_INVALID, then on successful function completion, *sig cycle next p will contain
the next cycle direction greater than a cycle direction specified in *sig cycle next p when
calling the function. If the first or next cycle direction does not exist, then on successful
function completion, *sig cycle next p will be QSMM_SIG_INVALID.

If the storage has a set redirection function for retrieving the next cycle type of an action
choice state, the function qsmm_get_storage_cycle_next calls the redirection function to
obtain the next cycle type. If the redirection function reports that it has not retrieved the
next cycle type, qsmm_get_storage_cycle_next proceeds as if the storage does not have
such redirection function set.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The storage does not support length ngram sz for arrays of signal identifiers
encoding action choice states.

QSMM_ERR_NGRAM

The storage does not support holding information on an action choice state en-
coded using sig ngram p and valid ngram sz. A set of action choice states sup-
ported by storage is equal to a set of action choice states supported by an actor
owning the storage.

QSMM_ERR_STORAGE

The storage redirection function reported QSMM_ERR_STORAGE or an unexpected
error code. See Section 3.7 [Getting the Reason of a Storage Failure], page 95,
for how to get an error message describing the failure.

Chapter 3: Statistics Storage 89

QSMM_ERR_STATS

The storage redirection function reported QSMM_ERR_STATS, or a cycle direction
obtained by that redirection function is not QSMM_SIG_INVALID and is not an
output signal of an actor owning the storage.

QSMM_ERR_ILSEQ

The storage redirection function reported QSMM_ERR_ILSEQ, or a generated error
message is not convertible to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

3.5 Providing Initial Statistics

Before first use, Storage API functions initialize by the function memset with zeroes the instances
of qsmm_state_s, qsmm_sspur_s, qsmm_cycle_s, and qsmm_cspur_s structures holding condi-
tions for action choice states and statistics on cycle types. For every instance of qsmm_state_s
structure, the Storage API functions also perform the following assignments: set the fields tmd0
and tmc0 to −1 and the field sig_cycle_next to QSMM_SIG_INVALID.

An application program can provide redirection functions called by the Storage API functions
just after the above initialization. Those redirection functions may perform application-specific
initialization. The Storage API functions will call those functions on accessing condition for
an action choice state or statistics on a cycle type when storage does not contain requested
information about the action choice state or the cycle type.

Storage redirection functions performing application-specific initialization may set the pa-
rameters of a probability profile for an action choice state. They may also call Storage API

functions for other action choice states, for example, to copy the parameters of a probability
profile from another action choice state.

[Data type]qsmm_get_state_stats_func_t
This is the type of a pointer to a redirection function for application-specific initialization of
condition of an action choice state. The type has the following declaration:

typedef int

(*qsmm_get_state_stats_func_t)(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

struct qsmm_state_s *state_p,

struct qsmm_sspur_s *sspur_p,

void *paramp

);

The argument storage is a storage handle with this redirection function set. On calling this
function, *state p and the array sspur p contain preinitialized values. The function can set
*state p and/or elements of sspur p array to application-specific initial condition for an action
choice state. An array of signal identifiers sig ngram p holding ngram sz elements encodes
the action choice state. The elements of sspur p array correspond to spur types supported by
the storage. The function qsmm_get_storage_nspur returns the number of those elements in
the array. The argument paramp is a user parameter specified when setting the redirection
function for the storage.

If the function has performed the redirection and possibly modified the preinitialized values
in *state p or the array sspur p, the function shall return a positive result. If the function
has not performed the redirection and has left those preinitialized values intact, the function
shall return 0. On failure, the function shall return one of the following negative error codes.

Chapter 3: Statistics Storage 90

QSMM_ERR_STORAGE

Storage failure. Before reporting this error, the function shall add to the stor-
age message list at least one message describing the reason of the failure. See
Section 3.7 [Getting the Reason of a Storage Failure], page 95, for more informa-
tion on the storage message list.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to retrieve or set a redirection function for application-specific
initialization of condition of an action choice state.

[Function]int qsmm_get_storage_state_stats_redir (qsmm storage t storage,
qsmm get state stats func t *get_state_stats_func_p, void **param_pp)

This function retrieves a previously set redirection function for application-specific initializa-
tion of conditions of action choice states in storage. If get state stats func p is not NULL, the
function qsmm_get_storage_state_stats_redir sets *get state stats func p to a pointer
to the redirection function or to NULL if the storage does not have such function assigned.
If param pp is not NULL, qsmm_get_storage_state_stats_redir sets *param pp to a user
parameter of that redirection function specified when assigning it to the storage. The function
qsmm_get_storage_state_stats_redir returns a non-negative value.

[Function]int qsmm_set_storage_state_stats_redir (qsmm storage t storage,
qsmm get state stats func t get_state_stats_func, void *paramp)

This function sets a redirection function for application-specific initialization of conditions of
action choice states in storage. The argument get state stats func specifies a pointer to the
redirection function. The argument paramp specifies the user parameter of that redirection
function. If get state stats func is NULL, then the storage will not use a redirection function
for application-specific initialization of conditions of action choice states. The function qsmm_

set_storage_state_stats_redir returns a non-negative value.

[Data type]qsmm_get_cycle_stats_func_t
This is the type of a pointer to a redirection function for application-specific initialization of
statistics on a cycle type. The pointer type has the following declaration:

typedef int

(*qsmm_get_cycle_stats_func_t)(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

qsmm_sig_t sig_cycle,

struct qsmm_cycle_s *cycle_p,

struct qsmm_cspur_s *cspur_p,

void *paramp

);

The argument storage is a storage handle with this redirection function set. On calling this
function, *cycle p and the array cspur p contain preinitialized values. The function can set
*cycle p and/or elements of cspur p array to application-specific initial statistics on a cycle

Chapter 3: Statistics Storage 91

type. An action choice state and output signal sig cycle indicating a cycle direction specify
the cycle type. An array of signal identifiers sig ngram p holding ngram sz elements encodes
the action choice state. The elements of cspur p array correspond to spur types supported by
the storage. The function qsmm_get_storage_nspur returns the number of those elements in
the array. The argument paramp is a user parameter specified when setting the redirection
function for the storage.

If the function has performed the redirection and possibly modified the preinitialized values
in *cycle p or the array cspur p, the function shall return a positive result. If the function
has not performed the redirection and has left those preinitialized values intact, the function
shall return 0. On failure, the function shall return one of the following negative error codes.

QSMM_ERR_STORAGE

Storage failure. Before reporting this error, the function shall add to the stor-
age message list at least one message describing the reason of the failure. See
Section 3.7 [Getting the Reason of a Storage Failure], page 95, for more informa-
tion on the storage message list.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to retrieve or set a redirection function for application-specific
initialization of statistics on a cycle type.

[Function]int qsmm_get_storage_cycle_stats_redir (qsmm storage t storage,
qsmm get cycle stats func t *get_cycle_stats_func_p, void **param_pp)

This function retrieves a previously set redirection function for application-specific initial-
ization of statistics on cycle types in storage. If get cycle stats func p is not NULL, the
function qsmm_get_storage_cycle_stats_redir sets *get cycle stats func p to a pointer
to the redirection function or to NULL if the storage does not have such function assigned.
If param pp is not NULL, qsmm_get_storage_cycle_stats_redir sets *param pp to a user
parameter of that redirection function specified when assigning it to the storage. The function
qsmm_get_storage_cycle_stats_redir returns a non-negative value.

[Function]int qsmm_set_storage_cycle_stats_redir (qsmm storage t storage,
qsmm get cycle stats func t get_cycle_stats_func, void *paramp)

This function sets a redirection function for application-specific initialization of statistics on
cycle types in storage. The argument get cycle stats func specifies a pointer to the redi-
rection function. The argument paramp specifies the user parameter of that redirection
function. If get cycle stats func is NULL, then the storage will not use a redirection function
for application-specific initialization of statistics on cycle types. The function qsmm_set_

storage_cycle_stats_redir returns a non-negative value.

If an application sets a redirection function for custom initialization of statistics on cycle
types, the application may need to provide a redirection function for retrieving the next cycle
type for an action choice state. The latter redirection function will enable correct enumeration
of cycle types with initial statistics provided by the former redirection function. Enumerating
cycle types that do not yet have information in storage is necessary for generating the probability
profiles of action choice states on demand—on read access to information on action choice states
and their cycle types before the first write access to this information.

Chapter 3: Statistics Storage 92

[Data type]qsmm_get_cycle_next_func_t
This is the type of a pointer to a redirection function for retrieving the next cycle type for
an action choice state. The pointer type has the following declaration:

typedef int

(*qsmm_get_cycle_next_func_t)(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

qsmm_sig_t *sig_cycle_next_p,

void *paramp

);

The argument storage is a storage handle with this redirection function set passed to the
function qsmm_get_storage_cycle_next. The array of signal identifiers sig ngram p holding
ngram sz elements encodes the action choice state. The argument paramp is a user parameter
specified when setting the redirection function for the storage.

If *sig cycle next p is QSMM_SIG_INVALID, then on successfully performed redirection,
*sig cycle next p shall contain a minimum output signal that along with the action choice
state specify the first cycle type for that action choice state. If *sig cycle next p is not
QSMM_SIG_INVALID, then on successfully performed redirection, *sig cycle next p shall con-
tain the next output signal greater than a signal specified in *sig cycle next p when calling
the redirection function; that output signal along with the action choice state shall specify
the next cycle type for the action choice state. If the first or next cycle type does not exist,
then on successful function completion, *sig cycle next p shall be QSMM_SIG_INVALID.

If the function has performed the redirection and possibly updated *sig cycle next p, the
function shall return a positive value. If the function has not performed the redirection and
has left *sig cycle next p intact, the function shall return 0; in this case, qsmm_get_storage_
cycle_next retrieves the next cycle type without the redirection. On failure, the redirection
function shall return one of the following negative error codes.

QSMM_ERR_STORAGE

Storage failure. Before reporting this error, the function shall add to the stor-
age message list at least one message describing the reason of the failure. See
Section 3.7 [Getting the Reason of a Storage Failure], page 95, for more informa-
tion on the storage message list.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to retrieve or set a redirection function for obtaining the next
cycle type for an action choice state.

[Function]int qsmm_get_storage_cycle_next_redir (qsmm storage t storage,
qsmm get cycle next func t *get_cycle_next_func_p, void **param_pp)

This function retrieves a previously set redirection function for obtaining the next cycle
type that has a piece of information in storage. If get cycle next func p is not NULL, the
function qsmm_get_storage_cycle_next_redir sets *get cycle next func p to a pointer to
the redirection function or to NULL if the storage does not have such function assigned.

Chapter 3: Statistics Storage 93

If param pp is not NULL, qsmm_get_storage_cycle_next_redir sets *param pp to a user
parameter of that redirection function specified when assigning it to the storage. The function
qsmm_get_storage_cycle_next_redir returns a non-negative value.

[Function]int qsmm_set_storage_cycle_next_redir (qsmm storage t storage,
qsmm get cycle next func t get_cycle_next_func, void *paramp)

This function sets a redirection function for obtaining the next cycle type that has a piece of
information in storage. The argument get cycle next func specifies a pointer to the redirec-
tion function. The argument paramp specifies the user parameter of that redirection function.
If get cycle next func is NULL, then the storage will not use a redirection function for ob-
taining the next cycle type. The function qsmm_set_storage_cycle_next_redir returns a
non-negative value.

3.6 Intercepting the Updates of Cycle Type Statistics

Intercepting the updates of statistics on cycle types may be necessary to organize keeping this
statistics only for latest events in an event history rather than for the entire event history.
Keeping statistics just for the tail of the event history may improve the response of a system to
latest tendencies in the event history. Using a different methodology, by making a state model
less stable, the system can try more state model variations and then select a variation that
occurs more frequently.

The function qsmm_set_storage_cycle_stats calls a storage redirection function for inter-
cepting the updates of statistics on cycle types if storage has such redirection function set. The
type of a pointer to the redirection function is below.

[Data type]qsmm_update_cycle_stats_func_t
This is the type of a pointer to a redirection function for intercepting the updates of statistics
on cycle types. The pointer type has the following declaration:

typedef int

(*qsmm_update_cycle_stats_func_t)(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

qsmm_sig_t sig_cycle,

const struct qsmm_cycle_s *cycle_new_p,

struct qsmm_cycle_s *cycle_result_p,

const struct qsmm_cspur_s *cspur_new_p,

struct qsmm_cspur_s *cspur_result_p,

void *paramp

);

The argument storage is a storage handle with this redirection function set passed to the func-
tion qsmm_set_storage_cycle_stats. An action choice state and output signal sig cycle
indicating a cycle direction specify a cycle type. An array of signal identifiers sig ngram p
holding ngram sz elements encodes the action choice state.

New statistics on the cycle type is in *cycle new p and the array cspur new p. On calling the
function, current statistics on the cycle type is in *cycle result p and the array cspur result p.
The arrays cspur new p and cspur result p hold the number of elements returned by the
function qsmm_get_storage_nspur. The redirection function can compute the difference
between *cycle new p and *cycle result p and between the elements of cspur new p and
cspur result p.

To directly use *cycle result p and the array cspur result p as the new statistics on the
cycle type, the function shall return a positive value; in this case, the function can change

Chapter 3: Statistics Storage 94

*cycle result p and the array cspur result p in its own way. To replace *cycle result p with
*cycle new p, replace the elements of cspur result p with the elements of cspur new p, and
use *cycle result p and the array cspur result p as the new statistics on the cycle type, the
function shall return 0. On failure, the function shall return one of the following negative
error codes.

QSMM_ERR_STORAGE

Storage failure. Before reporting this error, the function shall add to the stor-
age message list at least one message describing the reason of the failure. See
Section 3.7 [Getting the Reason of a Storage Failure], page 95, for more informa-
tion on the storage message list.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

To organize keeping statistics on cycle types for the event history tail, a storage redirection
function intercepting the updates of statistics on cycle types keeps a queue of records, where
every record contains the following information about an update of statistics on a cycle type:

– time of the update;

– an action choice state and a cycle direction specifying the cycle type;

– increments to the fields fq, period_sum_d, and period_sum_c of qsmm_cycle_s structure
and the field delta_sum in the elements of an array of qsmm_cspur_s structures;

– increments to spur accumulated by the actor relative to the previous update.

The redirection function does the following:

1. Prevents recursive calls to itself when calling the function qsmm_set_storage_cycle_stats

to decrement statistics on cycle types.

2. Removes too old records from the queue with decrementing statistics on cycle types specified
by removed records and with decrementing spur accumulated by the actor. A removed
record contains differences to statistics on the cycle type and a difference to spur tracked by
the actor relative to the previously added record. After removing the old records, storage
contains statistics on cycle types and the actor holds spur only for the event history tail.

3. Adds a new record to the queue.

Use the following functions to retrieve or set a redirection function for intercepting the up-
dates of statistics on cycle types.

[Function]int qsmm_get_storage_cycle_update_hook (qsmm storage t storage,
qsmm update cycle stats func t *update_cycle_stats_func_p, void
**param_pp)

This function retrieves a previously set redirection function for intercepting the updates of
statistics on cycle types by the function qsmm_set_storage_cycle_stats called for storage.
If update cycle stats func p is not NULL, the function qsmm_get_storage_cycle_update_

hook sets *update cycle stats func p to a pointer to the redirection function or to NULL if the
storage does not have such function assigned. If param pp is not NULL, qsmm_get_storage_
cycle_update_hook sets *param pp to a user parameter of that redirection function specified
when assigning it to the storage. The function qsmm_get_storage_cycle_update_hook re-
turns a non-negative value.

Chapter 3: Statistics Storage 95

[Function]int qsmm_set_storage_cycle_update_hook (qsmm storage t storage,
qsmm update cycle stats func t update_cycle_stats_func, void *paramp)

This function sets a redirection function for intercepting the updates of statistics on cycle
types by the function qsmm_set_storage_cycle_stats called for storage. The argument
update cycle stats func specifies a pointer to the redirection function. The argument paramp
specifies the user parameter of that redirection function. If update cycle stats func is NULL,
then the storage will not use a redirection function for intercepting the updates of statistics
on cycle types. The function qsmm_set_storage_cycle_update_hook returns a non-negative
value.

3.7 Getting the Reason of a Storage Failure

When a Storage API function returns error code QSMM_ERR_STORAGE, the function clears a storage
message list and adds to it at least one message describing a failure.

A handle of qsmm_msglist_t type represents a message list. See Section 6.3 [Messages and
Message Lists], page 251, for how to work with message lists. Use the following function to
obtain a message list associated with storage.

[Function]qsmm_msglist_t qsmm_get_storage_msglist (qsmm storage t
storage)

This function returns the handle of a message list associated with storage. The function
never returns NULL.

To dump to stderr the message list of storage in an application program with an executable
named prg name, use lines of code like these:

const int rc=qsmm_msglist_dump(qsmm_get_storage_msglist(storage),

prg_name, 0, 0, stderr);

if (rc<0) REPORT_ERROR(rc);

If an Actor API function returns error code QSMM_ERR_STORAGE, and the actor is the small
one, the message list of storage owned by that actor contains at least one message describing a
storage failure. Use the function qsmm_get_actor_storage to get the handle of storage owned
by the small actor.

If an Actor API function returns error code QSMM_ERR_STORAGE, and the actor is the large one,
then failed storage can be the storage of that actor itself or the storage of an associated small
actor representing the environment state identification engine or the storage of an associated
small actor representing the instruction emitting engine. Provided that all storage message lists
were empty before calling the Actor API function, one of them is non-empty and contains a
message describing the failure.

The following function returns the handle of failed storage of a small or large actor or NULL
if the storage message lists are empty:

qsmm_storage_t

get_err_storage(

qsmm_actor_t actor

) {

qsmm_storage_t storage=qsmm_get_actor_storage(actor);

if (qsmm_get_msglist_sz(qsmm_get_storage_msglist(storage))) return storage;

const qsmm_t qsmm_large=qsmm_get_actor_large_model(actor);

if (!qsmm_large) return 0;

const qsmm_actpair_t actpair=qsmm_get_actpair(qsmm_large);

if ((storage=get_err_storage(qsmm_get_actpair_actor_env(actpair)))) return storage;

if ((storage=get_err_storage(qsmm_get_actpair_actor_opt(actpair)))) return storage;

return 0;

}

Chapter 3: Statistics Storage 96

3.8 Example of Using the Storage API

When working with an actor, a helpful feature would be the ability to save the state of the actor
to a file and restore that state from the file later. This is not a built-in feature, but a developer can
program it using the Actor and Storage APIs. Example functions actor_save and actor_load

for saving and loading the state of a small actor are available in the file samples/load_save.c
in the package distribution. This section includes them too.

The function actor_save saves the following information for a small actor:

1. The mode of behavior: adaptive or random.

2. The number of signals.

3. The number of spur types.

4. The length of a signal list encoding an action choice state.

5. The index of a spur type for the automatic spur.

6. Discrete time.

7. Continuous time.

8. The number of output signals emitted per one unit of discrete time passed.

9. The nominal number of output signals.

10. Actor temperature.

11. The ranges of signals in a list encoding an action choice state. For every range, the function
saves the following information:

A. Minimum allowed signal identifier.

B. Maximum allowed signal identifier.

12. Spur type parameters. For every spur type, the function saves the following information:

A. Spur value.

B. Spur weight.

C. The way of spur perception: normal or inverse.

D. The type of time for computing spur increment velocity: discrete or continuous.

13. Output signal weights. For every output signal, the function saves the following information:

A. Signal identifier.

B. Signal weight.

14. The content of the buffer for an n-gram of signals from the event history.

15. Information on action choice states held in statistics storage. For every action choice state,
the callback function wr_acstate saves the following information:

A. Signal list encoding the action choice state.

B. The condition of the action choice state itself.

C. The condition of every spur type for the action choice state.

D. Cycle type statistics. For every cycle type, the callback function wr_acstate saves the
following information:

a. Cycle direction.

b. Statistics on the cycle type itself.

c. Statistics on every spur type for the cycle type.

The functions actor_save and actor_load do not save and load the following parameters:

1. The type of a function returning the relative probability of an output signal. The func-
tion qsmm_get_actor_relprob_type queries that type. The function qsmm_set_actor_

relprob_type sets that type.

Chapter 3: Statistics Storage 97

2. A helper function for computing the relative probability of an output signal. The function
qsmm_get_actor_relprob_helper retrieves the helper function. The function qsmm_set_

actor_relprob_helper sets the helper function.

3. The content of the internal array holding the relative probabilities of output signals. The
function qsmm_get_actor_choice_sig_prob returns a pointer to the array. The function
qsmm_actor_choice_sig_prob_release releases the pointer after accessing the array. The
function qsmm_get_actor_choice_sig_prob_vec returns a read-only view of that array as
an ordinary or sparse vector.

4. The content of the pool of probabilities lists in normal form. The function qsmm_actor_

profile_add adds a probabilities list to the pool.

5. The content of the pool of permutations of output signals. The functions qsmm_actor_

profile_add and qsmm_actor_permut_add add a permutation of output signals to the
pool.

6. Preloaded probability profiles assigned to action choice states. The function qsmm_get_

actor_ngram_profile queries a preloaded probability profile assigned to an action choice
state. The function qsmm_set_actor_ngram_profile assigns a preloaded probability pro-
file to an action choice state.

7. Last discrete cycle period. The function qsmm_get_actor_discrete_cycle_period_last

returns this cycle period.

8. Mean discrete cycle period. The function qsmm_get_actor_discrete_cycle_period_mean

returns this cycle period.

9. Storage redirection functions if used. The functions qsmm_get_storage_state_stats_

redir, qsmm_get_storage_cycle_stats_redir, qsmm_get_storage_cycle_next_redir,
and qsmm_get_storage_cycle_update_hook retrieve those storage redirection
functions. The functions qsmm_set_storage_state_stats_redir, qsmm_set_

storage_cycle_stats_redir, qsmm_set_storage_cycle_next_redir, and
qsmm_set_storage_cycle_update_hook set those storage redirection functions.

The function actor_save saves the state of a small actor to a file. That function returns 0
on success or prints an error message to stderr and returns −1 on failure.

The function actor_load loads the state of an existing small actor from a file. The existing
actor must have the following parameters set equal to parameters contained in the file:

1. The number of signals.

2. The number of spur types.

3. The length of a signal list encoding an action choice state.

4. The ranges of signals in a list encoding an action choice state.

5. The set of identifiers of output signals.

The function actor_load adds information on action choice states read from a file to storage.
That function does not clear existing information on action choice states in the storage. The
function returns 0 on success or prints an error message to stderr and returns −1 on failure.

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <qsmm/qsmm.h>

#define ERREXIT(fmt, ...) \

do { \

fprintf(stderr,"%s: " fmt "\n", prg_name, ## __VA_ARGS__); \

goto Exit; \

} \

while (0)

Chapter 3: Statistics Storage 98

#define ERRFILE(fmt, ...) ERREXIT("%s: " fmt, fln, ## __VA_ARGS__);

#define CHK_FAIL(func, ...) \

do { \

const int rc=func(__VA_ARGS__); \

if (rc<0) ERREXIT(#func ": %s", qsmm_err_str(rc)); \

} \

while (0)

#define READ(var) \

do { \

if (fread(&(var),sizeof(var),1,filep)!=1) ERRFILE("read error"); \

} \

while (0)

#define WRITE(var) \

do { \

if (fwrite(&(var),sizeof(var),1,filep)!=1) \

ERRFILE("write error"); \

} \

while (0)

struct wr_acstate_param_s {

const char *prg_name; // program name

const char *fln; // output stream file name;

FILE *filep; // output stream

};

// Write the condition of an enumerated action choice state and

// statistics on its cycle types to a stream.

// Returns: 1 = success;

// -1 = failure.

static int

wr_acstate(

qsmm_storage_t storage,

int ngram_sz,

const qsmm_sig_t *sig_ngram_p,

void *paramp

) {

int spur_type, result=-1;

struct wr_acstate_param_s *const param_p=paramp;

const char *const prg_name=param_p->prg_name, *const fln=param_p->fln;

FILE *const filep=param_p->filep;

WRITE(ngram_sz);

for (int ii=0; ii<ngram_sz; ii++) WRITE(sig_ngram_p[ii]);

const int nspur=qsmm_get_storage_nspur(storage);

{

struct qsmm_state_s state;

struct qsmm_sspur_s sspur[nspur];

CHK_FAIL(qsmm_get_storage_state_stats, storage,

ngram_sz, sig_ngram_p, &state, sspur);

WRITE(state);

for (spur_type=0; spur_type<nspur; spur_type++)

WRITE(sspur[spur_type]);

}

Chapter 3: Statistics Storage 99

qsmm_sig_t sig=QSMM_SIG_INVALID;

while (1) {

CHK_FAIL(qsmm_get_storage_cycle_next, storage,

ngram_sz, sig_ngram_p, &sig);

WRITE(sig);

if (sig==QSMM_SIG_INVALID) break;

struct qsmm_cycle_s cycle;

struct qsmm_cspur_s cspur[nspur];

CHK_FAIL(qsmm_get_storage_cycle_stats, storage,

ngram_sz, sig_ngram_p, sig, &cycle, cspur);

WRITE(cycle);

for (spur_type=0; spur_type<nspur; spur_type++)

WRITE(cspur[spur_type]);

}

result=1;

Exit:

return result;

}

// Save the state of a small actor to a file.

// Returns: 0 = success;

// -1 = failure.

int

actor_save(

const char *prg_name,

const char *fln,

qsmm_actor_t actor

) {

int ii, result=-1;

FILE *filep=0;

if (qsmm_get_actor_large_model(actor))

ERREXIT("saving the state of a large actor not supported");

if (!(filep=fopen(fln,"w")))

ERRFILE("failed to open the file for writing");

const char is_random=!!qsmm_get_actor_random(actor);

WRITE(is_random);

const int nsig=qsmm_get_actor_nsig(actor);

WRITE(nsig);

const int nspur=qsmm_get_actor_nspur(actor);

WRITE(nspur);

const int ngram_sz=qsmm_get_actor_ngram_sz(actor);

WRITE(ngram_sz);

int auto_spur_type=qsmm_get_actor_auto_spur_type(actor);

if (auto_spur_type==QSMM_ERR_NOTFOUND) auto_spur_type=-1;

WRITE(auto_spur_type);

const long tmd=qsmm_get_actor_discrete_time(actor);

WRITE(tmd);

const double tmc=qsmm_get_actor_continuous_time(actor);

WRITE(tmc);

const double naction_per_evt=qsmm_get_actor_naction_per_evt(actor);

WRITE(naction_per_evt);

const double nsig_ctrl=qsmm_get_actor_nsig_ctrl(actor);

WRITE(nsig_ctrl);

const double ktemperature=qsmm_get_actor_ktemperature(actor);

WRITE(ktemperature);

const struct qsmm_pair_sig_s *const range_sig_p=qsmm_get_actor_range_sig(actor);

for (ii=0; ii<ngram_sz; ii++) {

const struct qsmm_pair_sig_s *const pair_p=range_sig_p+ii;

WRITE(pair_p->first);

WRITE(pair_p->second);

}

for (int spur_type=0; spur_type<nspur; spur_type++) {

Chapter 3: Statistics Storage 100

double spur_val=0, spur_weight=0;

CHK_FAIL(qsmm_get_actor_spur,actor,spur_type,&spur_val);

WRITE(spur_val);

CHK_FAIL(qsmm_get_actor_spur_weight,actor,spur_type,&spur_weight);

WRITE(spur_weight);

enum qsmm_spur_perception_e spur_perception=QSMM_SPUR_PERCEPTION_NORMAL;

CHK_FAIL(qsmm_get_actor_spur_perception, actor,

spur_type, &spur_perception);

WRITE(spur_perception);

enum qsmm_time_e spur_time=QSMM_TIME_CONTINUOUS;

CHK_FAIL(qsmm_get_actor_spur_time,actor,spur_type,&spur_time);

WRITE(spur_time);

}

qsmm_sig_t sig_next;

for (sig_next=0; sig_next<nsig; sig_next++) {

double weight_sig=0;

const int rc=qsmm_get_actor_sig_weight(actor,sig_next,&weight_sig);

if (rc<0) {

if (rc==QSMM_ERR_INVAL) continue;

ERREXIT("qsmm_get_actor_sig_weight: %s",qsmm_err_str(rc));

}

WRITE(sig_next);

WRITE(weight_sig);

}

sig_next=QSMM_SIG_INVALID;

WRITE(sig_next);

const qsmm_sig_t *const sig_ngram_p=qsmm_get_actor_sig_ngram(actor);

for (ii=0; ii<ngram_sz; ii++) WRITE(sig_ngram_p[ii]);

struct wr_acstate_param_s wr_acstate_param;

memset(&wr_acstate_param,0,sizeof(wr_acstate_param));

wr_acstate_param.prg_name=prg_name;

wr_acstate_param.fln=fln;

wr_acstate_param.filep=filep;

CHK_FAIL(qsmm_storage_enum_states, qsmm_get_actor_storage(actor),

0, 0, &wr_acstate, &wr_acstate_param);

ii=0;

WRITE(ii);

result=0;

Exit:

if (filep) fclose(filep);

return result;

}

// Load the state of a small actor from a file.

// Returns: 0 = success;

// -1 = failure.

// WARNING: possible loss of atomicity: on failure, the state of the actor

// may be partially updated.

int

actor_load(

const char *prg_name,

const char *fln,

qsmm_actor_t actor

) {

int ii, spur_type, result=-1;

FILE *filep=0;

if (qsmm_get_actor_large_model(actor))

ERREXIT("loading the state of a large actor not supported");

if (!(filep=fopen(fln,"r"))) ERRFILE("failed to open the file");

char is_random=0;

READ(is_random);

int nsig_stream=0, nspur_stream=0, ngram_sz_stream=0,

Chapter 3: Statistics Storage 101

auto_spur_type=-1;

READ(nsig_stream);

const int nsig_actor=qsmm_get_actor_nsig(actor);

if (nsig_stream!=nsig_actor)

ERREXIT(

"number of signals does not match: %d (file) != %d (actor)",

nsig_stream, nsig_actor);

READ(nspur_stream);

const int nspur_actor=qsmm_get_actor_nspur(actor);

if (nspur_stream!=nspur_actor)

ERREXIT(

"number of spur types does not match: %d (file) != %d (actor)",

nspur_stream, nspur_actor);

READ(ngram_sz_stream);

const int ngram_sz_actor=qsmm_get_actor_ngram_sz(actor);

if (ngram_sz_stream!=ngram_sz_actor)

ERREXIT("n-gram length does not match: %d (file) != %d (actor)",

ngram_sz_stream, ngram_sz_actor);

READ(auto_spur_type);

long tmd=0;

READ(tmd);

double tmc=0, naction_per_evt=0, nsig_ctrl=0, ktemperature=0;

READ(tmc);

if (!isfinite(tmc) || tmc<0)

ERREXIT("invalid continuous time (%g)",tmc);

READ(naction_per_evt);

READ(nsig_ctrl);

READ(ktemperature);

const struct qsmm_pair_sig_s *pair_p,

*const range_sig_p=qsmm_get_actor_range_sig(actor);

for (ii=0; ii<ngram_sz_stream; ii++) {

struct qsmm_pair_sig_s range;

READ(range.first);

READ(range.second);

pair_p=range_sig_p+ii;

if (range.first!=pair_p->first)

ERREXIT("range %d: minimum allowed signal does not match: %"

QSMM_FMT_PRI_SIG " (file) != %" QSMM_FMT_PRI_SIG

" (actor)", ii, range.first, pair_p->first);

if (range.second!=pair_p->second)

ERREXIT("range %d: maximum allowed signal does not match: %"

QSMM_FMT_PRI_SIG " (file) != %" QSMM_FMT_PRI_SIG

" (actor)", ii, range.second, pair_p->second);

}

qsmm_set_actor_random(actor,is_random);

CHK_FAIL(qsmm_set_actor_auto_spur_type,actor,auto_spur_type);

qsmm_set_actor_discrete_time(actor,tmd);

CHK_FAIL(qsmm_actor_time_delta, actor,

tmc-qsmm_get_actor_continuous_time(actor));

CHK_FAIL(qsmm_set_actor_naction_per_evt,actor,naction_per_evt);

CHK_FAIL(qsmm_set_actor_nsig_ctrl,actor,nsig_ctrl);

CHK_FAIL(qsmm_set_actor_ktemperature,actor,ktemperature);

for (spur_type=0; spur_type<nspur_stream; spur_type++) {

double spur=0, spur0=0, spur_weight=0;

enum qsmm_spur_perception_e spur_perception=QSMM_SPUR_PERCEPTION_NORMAL;

enum qsmm_time_e spur_time=QSMM_TIME_CONTINUOUS;

READ(spur);

if (!isfinite(spur))

ERREXIT("spur type %d: invalid spur value (%g)",

spur_type, spur);

CHK_FAIL(qsmm_get_actor_spur,actor,spur_type,&spur0);

CHK_FAIL(qsmm_actor_spur_delta,actor,spur_type,spur-spur0);

READ(spur_weight);

CHK_FAIL(qsmm_set_actor_spur_weight,actor,spur_type,spur_weight);

READ(spur_perception);

Chapter 3: Statistics Storage 102

if (spur_perception!=QSMM_SPUR_PERCEPTION_NORMAL &&

spur_perception!=QSMM_SPUR_PERCEPTION_INVERSE)

ERREXIT("spur type %d: invalid spur perception (%d)",

spur_type, spur_perception);

CHK_FAIL(qsmm_set_actor_spur_perception, actor,

spur_type, spur_perception);

READ(spur_time);

if (spur_time!=QSMM_TIME_DISCRETE &&

spur_time!=QSMM_TIME_CONTINUOUS)

ERREXIT("spur type %d: invalid spur time (%d)",

spur_type, spur_time);

CHK_FAIL(qsmm_set_actor_spur_time,actor,spur_type,spur_time);

}

qsmm_sig_t sig;

while (1) {

READ(sig);

if (sig==QSMM_SIG_INVALID) break;

double weight_sig=0;

READ(weight_sig);

CHK_FAIL(qsmm_set_actor_sig_weight,actor,sig,weight_sig);

}

qsmm_sig_t *const sig_ngram_p=qsmm_get_actor_sig_ngram(actor);

for (ii=0; ii<ngram_sz_stream; ii++) {

READ(sig);

pair_p=range_sig_p+ii;

if (sig<pair_p->first)

ERREXIT("n-gram signal #%d (%" QSMM_FMT_PRI_SIG

") is less than the minimum allowed signal (%"

QSMM_FMT_PRI_SIG ")", ii, sig, pair_p->first);

if (sig>pair_p->second)

ERREXIT("n-gram signal #%d (%" QSMM_FMT_PRI_SIG

") is greater than the maximum allowed signal (%"

QSMM_FMT_PRI_SIG ")", ii, sig, pair_p->second);

sig_ngram_p[ii]=sig;

}

const qsmm_storage_t storage=qsmm_get_actor_storage(actor);

while (1) {

int ngram_storage_sz=0;

struct qsmm_state_s state;

READ(ngram_storage_sz);

if (ngram_storage_sz<1) break;

if (ngram_storage_sz!=ngram_sz_actor)

ERREXIT(

"n-gram length does not match: %d (file) != %d (actor)",

ngram_storage_sz, ngram_sz_actor);

qsmm_sig_t sig_ngram_storage[ngram_storage_sz];

for (ii=0; ii<ngram_storage_sz; ii++) READ(sig_ngram_storage[ii]);

READ(state);

struct qsmm_sspur_s sspur[nspur_stream];

for (spur_type=0; spur_type<nspur_stream; spur_type++)

READ(sspur[spur_type]);

CHK_FAIL(qsmm_set_storage_state_stats, storage,

ngram_storage_sz, sig_ngram_storage, &state, sspur);

while (1) {

struct qsmm_cycle_s cycle;

READ(sig);

if (sig==QSMM_SIG_INVALID) break;

READ(cycle);

struct qsmm_cspur_s cspur[nspur_stream];

for (spur_type=0; spur_type<nspur_stream; spur_type++)

READ(cspur[spur_type]);

CHK_FAIL(qsmm_set_storage_cycle_stats, storage,

ngram_storage_sz, sig_ngram_storage,

sig, &cycle, cspur);

}

103

}

result=0;

Exit:

if (filep) fclose(filep);

return result;

}

104

4 Multinode Model

Multinode model is the concept of using an individual actor or a pair of actors in multiple
contexts where producing adaptive actions is necessary. The contexts might relate to the com-
ponents of a system you develop or entities external to the system. The nodes of a multinode
model are adaptive programmatic representations of those contexts. They provide learning ca-
pabilities to the system, the ability to produce actions based on learned interactions, and can
define preprogrammed behavior. A special case of multinode model is a single-node model.

A node possesses control when it performs interactions with other entities by executing the
instructions of a possibly nondeterministic subroutine contained in the node. The execution of
this subroutine we briefly call node execution. At present, QSMM supports not more than one
node in a multinode model possessing control at any moment of time; in addition to that, a
node can execute not more than one instruction at any time. A node can pass control to another
node while executing an instruction at some location in the subroutine, and the other node can
return control to that location afterwards.

A node learns something when the subroutine becomes more deterministic or stable. This
added determinism affects subsequent interactions of this node with other entities.

Considering the sources of deterministic and stochastic behavior, their location, and their
ability to influence each other gives answers to the questions “Which entity is choosing actions?”
and “Is it easy for that entity to choose actions?” For example, a node can use a stochastic
physical process, such as the interference of individual electrons, to produce random numbers
for the subroutine to choose actions. If the node is not using a stochastic physical process, and
hardware for executing the subroutine operates deterministically, then information the node
receives from the environment may define the choice of actions.

Working with a multinode model begins with its preparation. It includes registering meta-
classes for instructions executable by nodes and registering the sets of instruction classes—
different nodes can have different instruction sets. The multinode model learns and performs
useful work during execution phase—the execution of nodes and transferring control between
them. Various information about a multinode model is available at various points in its lifetime.

4.1 Principle of Operation

A schematic diagram of a multinode model implementation is in Figure 4.1.

An environment state identification engine, instruction emitting engine, and instruction ex-
ecution environment are main model components taking part in model execution.

The environment state identification engine is a small or large actor keeping the adaptive state
model of an environment and identifying node states according to that model. This identification
is a bidirectional process: the current state of a node depends on the state of the environment
and needs identification; conversely, the node acts on the environment, and, therefore, the state
of the environment depends on an identified node state. For a single-node model, its node
corresponds to the entire environment. For a multinode model, a node corresponds to part of
the environment.

Along with the adaptive state model, the environment state identification engine keeps the
identifier of a currently executed node, the index of its previous state, an optional array of
identifiers of look-ahead signals (see Section 4.3.4 [Setting Look-ahead Signals], page 154), and,
as an actor, it keeps the current values of spur and continuous time.

The structures of tuples encoding the action choice states of an environment state identifica-
tion engine for a single-node model and a multinode model are in Figure 4.2. The environment
state identification engine identifies a current node state based on a previous node state and
an array of input signals specifying last instruction emitted by the instruction emitting engine,

Chapter 4: Multinode Model 105

the outcome of this instruction, and optional look-ahead signals. For a multinode model, the
identifier of a currently executed node takes part in identifying the current node state.

The environment state identification engine sends the identifier of a currently executed node
and the index of its current identified state to the instruction emitting engine. The latter engine
is a small or large actor keeping an adaptive model of emitting various assembler instructions
in various node states. As an actor, the instruction emitting engine keeps the current values of
spur and continuous time, and they can be different from those values for the environment state
identification engine.

The structures of tuples encoding the action choice states of an instruction emitting engine
for a single-node model and a multinode model are in Figure 4.3. The instruction emitting
engine selects an output signal encoding an assembler instruction. A current node state received
from the environment state identification engine takes part in selecting the output signal. For
a multinode model, the identifier of a currently executed node received from the environment
state identification engine also takes part in selecting the output signal.

The instruction emitting engine sends a selected assembler instruction to the instruction ex-
ecution environment for performing effective work and to the environment state identification
engine for identifying the next node state. That instruction execution environment represents
everything else in the multinode model, interacts with application logic or incorporates it, and is
aware of all parameters of the environment state identification engine and instruction emitting
engine. An assembler instruction returns an instruction outcome after execution. The instruc-
tion execution environment sends the outcome to the environment state identification engine for
identifying the next node state.

The instruction execution environment keeps a node call stack for the execution of nodes to
be similar to the execution of program subroutines (functions or procedures) calling each other
and returning control to caller subroutines. An executed assembler instruction can push the
identifier of a currently executed node and the index of its current state to the node call stack
and transfer control to another node with resetting the current node state to the initial node
state corresponding to the beginning of execution of a subroutine. The assembler instruction
can also return control to a previously executed node by popping the identifier of this node and
the index of its current state from the stack.

The assembler instruction can change look-ahead signals taking part in identifying the next
node state and increment the current values of spur and continuous time tracked by the envi-
ronment state identification engine and instruction emitting engine.

Chapter 4: Multinode Model 106

Figure 4.1: multinode model implementation

Figure 4.2: action choice states of an environment state identification engine

Figure 4.3: action choice states of an instruction emitting engine

A helpful feature of a multinode model is the ability to convert internal data stored in its
environment state identification engine and instruction emitting engine to a representation in
the form of an assembler program (see Chapter 5 [Assembler Programs], page 179). One can
think about this feature as automatic synthesis of an assembler program solving an assigned
task.

Chapter 4: Multinode Model 107

An important point the developer should realize is that automatic program synthesis may
work only if there exists a steady state model solving an assigned task. Steady state model is a
model where states have predictable input from an environment.

Below there is a list of concepts for enabling the automatic synthesis of assembler programs.

Instruction meta-class
Represents an instruction name without taking into account optional instruction
parameters following the instruction name after a whitespace character. The name of
an instruction meta-class is the name of an instruction without including instruction
parameters. Example:

move

This instruction meta-class might represent an instruction that moves an agent in an
environment one step in a specific direction. The name of this instruction meta-class
does not include a movement direction.

Instruction class
Represents an instruction name optionally followed by instruction parameters. Dis-
tinct strings, where every string consists of an instruction name and instruction
parameters in canonical form (see Section 4.2.2.6 [Setting Text Instruction Param-
eters], page 119), identify distinct instruction classes. Example:

move north

This instruction class might represent an instruction that moves an agent in the
environment one step in the north direction.

Instruction outcome
An instruction class has a specific number of instruction outcomes. An environment
state identification engine uses the outcome of an emitted instruction to identify the
next node state. The instruction emitting engine uses that next node state to select
the next instruction.

For example, the instruction ‘move north’ as well as other movement instructions
might return a bitmask of four bits (i.e. an integer number in the range 0 to 15) after
performing a move. A bit of this bitmask equal to 0 might indicate that there is an
obstacle in a corresponding direction, thus giving a piece of information to the agent
about the configuration of an environment. It might also be useful to return special
outcome 16 if there is an obstacle in a direction specified by an emitted instruction,
and this obstacle disallows the agent to move.

Instruction class set
Represents a set of instruction classes and its properties and is a class for nodes. For
example, the instruction class set ‘walker’ intended for investigating an environment
might contain the instruction classes

move north

move east

move south

move west

A node belonging to this node class might represent an agent investigating the
environment.

Instruction instance
An instance of an instruction class in an assembler program. For example, in the
assembler program fragment

Chapter 4: Multinode Model 108

move north

joe 14, return_back

move north

...

return_back:

move south

...

there are two instances of ‘move north’ instruction class.

4.2 Creating a Multinode Model

A handle of qsmm_t type refers to a multinode model. The function qsmm_create creates a
multinode model according to specified initial parameters and returns its handle. The function
qsmm_destroy destroys a multinode model specified by its handle. A number of functions fetch
initial model parameters after creating a model.

After creating an empty model, register instruction meta-classes and instruction class sets
defining assembler instruction sets for model nodes and specifying instruction-centric and node-
centric model behavior respectively. An instruction meta-class biuniquely corresponds to what
we call an assembler instruction name. An instruction class belongs to an instruction meta-class,
is a member of an instruction class set, and represents an assembler instruction with specific
parameters. Every instruction meta-class and instruction class set needs providing an event
handler function.

After registering one or more instruction class sets, create nodes belonging to node classes
represented by those instruction class sets. The basic parameters of a node include its identifier
and the number of internal states for holding a state model. The extended parameters of a node
include its state transition matrix maintained by the environment state identification engine and
its action emission matrix maintained by the instruction emitting engine. Both engines exist in
the scope of model instance holding the parameters of an executed model. After creating the
model instance, it may be necessary to override the default parameters of actors representing
those engines.

To use model-specific parameters in the event handler functions of instruction meta-classes
and instruction class sets called for multiple model handles, you can associate arbitrary pointers
with the handle of a multinode model or its any node.

4.2.1 Creating a Handle

A model handle refers to a multinode model.

[Data type]qsmm_t
This is a type for a model handle. It is a pointer, so variables of this type can be NULL.
The function qsmm_create creates a new model and returns its handle. The function qsmm_

destroy destroys an existing model addressed by a handle. You can pass a model handle to
API functions taking an argument of qsmm_t type after the creation of a model and until its
destruction.

Use the following functions to create and destroy a multinode model.

[Function]int qsmm_create (const struct qsmm desc s *desc_p, qsmm t
*model_p)

This function creates a multinode model using parameters in *desc p and stores a model
handle in *model p.

If model p is NULL, the function only validates the parameters in *desc p.

Chapter 4: Multinode Model 109

The function returns a non-negative value on success or a negative error code on failure in
creating a multinode model. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

Parameters in *desc p are invalid.

QSMM_ERR_NOMEM

There was not enough memory to create a multinode model.

[Function]void qsmm_destroy (qsmm t model)
This function destroys a multinode model specified by handle model. You must not use the
model handle after the model destruction. If model is NULL, the function has no effect.

Below there is a description of a structure passed in *desc p to the function qsmm_create.

[Structure]qsmm_desc_s
This structure describes parameters for creating a multinode model by the function qsmm_

create. The structure contains the following fields.

[Field]char use_flat_storage
A flag specifying the type of storage the environment state identification engine and in-
struction emitting engine will use: flat storage if the flag is non-zero, or map storage if the
flag is zero. The function qsmm_engine_create assigns this flag to the field use_flat_

storage of qsmm_actor_desc_s structure passed to the function qsmm_actor_create

when creating both engines. It is permissible to use flat storage if the fields is_large_env
and is_large_opt of this structure are zero.

[Field]char dont_use_instr_class_weights
A flag defining whether to set the weights of output signals of the instruction
emitting engine equal to the weights of instruction classes specified by the functions
qsmm_set_instr_class_weight, qsmm_set_instr_class_weight_by_name_f, and
qsmm_set_instr_meta_class_weight (see Section 4.3.5 [Setting Instruction Classes
Weights], page 155, for the descriptions of those functions). A zero flag means to set
the weights, and a non-zero flag means to not set them. If the flag is non-zero, those
functions will report QSMM_ERR_NOTSUP. If the field is_determ_opt or is_large_opt of
this structure is non-zero, the function qsmm_create implicitly sets this flag to a non-zero
value. Eliminating the need to set the weights speeds up model execution, especially
when the action emission matrix has a sparse probability profile, and the number of
instruction classes in the instruction class set is large.

[Field]char is_determ_opt
A flag imposing the following restriction on the probability profile of action emission
matrix of every model node: for every node state, that probability profile must define a
deterministic choice of an instruction class emitted in the node state. If this flag is non-
zero, the node assembler considers that node states begin just before user and mixed-type
instructions—marking unnamed node states by stt instructions becomes unnecessary. It
is permissible to set this flag to a non-zero value only if the field is_large_opt of this
structure is zero.

[Field]char is_large_env
A flag specifying whether to create a small or large actor for the environment state iden-
tification engine: a small actor if this flag is zero, or a large actor if this flag is non-zero.
The large actor uses binary Huffman trees. It is permissible to set this flag to a non-zero
value only if the field use_flat_storage of this structure is zero, and the field compat is
positive.

Chapter 4: Multinode Model 110

[Field]char is_large_opt
A flag specifying whether to create a small or large actor for the instruction emitting
engine: a small actor if this flag is zero, or a large actor if this flag is non-zero. The large
actor uses binary Huffman trees. It is permissible to set this flag to a non-zero value only
if the fields use_flat_storage and is_determ_opt of this structure are zero, and the
field compat is positive.

[Field]int nspur
The number of spur types. This number includes the automatic spur, although the model
might not really use that spur. If the field is_determ_opt of this structure is zero, the
field nspur must be greater than 1. If is_determ_opt is non-zero, nspur must be greater
than 0.

[Field]int stack_sz_max
The maximum allowed number of frames in the node call stack. If the actual number
of stack frames exceeds the maximum allowed number, the function qsmm_node_call_

default reports QSMM_ERR_STACKOVR. If the maximum allowed number of stack frames
is too large, a stack overflow may occur without reporting this error. This kind of stack
overflow typically causes a segmentation fault. The value of this field must be positive.

[Field]int ngram_env_la_sz
The length of a segment of extra signals in a signal list encoding an action choice state of the
environment state identification engine. Those extra signals take part in the identification
of a current node state. See Section 4.3.4 [Setting Look-ahead Signals], page 154, for more
information on them. The node assembler does not support loading assembler programs
into the nodes of a model with positive length of look-ahead signal segment. The value of
this field must be non-negative.

[Field]int nsig_ngram_env_la
An upper bound on the identifier of every signal in the look-ahead signal segment with
length specified in the field ngram_env_la_sz of this structure. Every identifier must be
less than the upper bound. If the length is positive, then the upper bound must also be
positive. If the length is zero, then the upper bound must also be zero.

[Field]int profile_pool_env_sz
Non-negative size of the pool of probabilities lists in normal form for the environment
state identification engine. The function qsmm_engine_create assigns this size to the
field profile_pool_sz of qsmm_actor_desc_s structure passed to the function qsmm_

actor_create when creating the engine.

[Field]int profile_pool_opt_sz
Non-negative size of the pool of probabilities lists in normal form for the instruction
emitting engine. The function qsmm_engine_create assigns this size to the field profile_

pool_sz of qsmm_actor_desc_s structure passed to the function qsmm_actor_create

when creating the engine.

[Field]int compat
The compatibility level of algorithms. Must be 0, 1, or 2. The function qsmm_engine_

create assigns that level to the field compat of qsmm_actor_desc_s structure passed
to the function qsmm_actor_create when creating the environment state identification
engine and instruction emitting engine. Additionally, value 2 means:

• Optimize setting the weights of output signals of the instruction emitting engine
equal to the weights of instruction classes specified by the functions qsmm_set_instr_
class_weight, qsmm_set_instr_class_weight_by_name_f, and qsmm_set_instr_

meta_class_weight (if the field dont_use_instr_class_weights of this structure

Chapter 4: Multinode Model 111

is zero): set all those weights only on calling a node or returning control to it from
another node and update a specific output signal weight by those functions if a node
identifier passed to them is equal to the identifier of a currently executed node.

• The function qsmm_get_nnode returns the actual number of existing nodes in the
model rather than the number of reserved nodes—those numbers are equal only in
certain cases.

• The environment state identification engine increments discrete time disregarding
whether or not the choice of a current node state is deterministic.

• The instruction emitting engine increments discrete time disregarding whether or not
the choice of an emitted instruction is deterministic.

• Compute the relative probabilities of QSMM_RELPROB_BUILTIN1 type by the environ-
ment state identification engine and instruction emitting engine independently of the
number of nodes in the model and the value of ngram_env_la_sz field of this struc-
ture.

Set this field to 2 in your new programs. This manual does not include outdated details
specific to previous algorithms.

[Field]double sparse_fill_max
Maximum fill ratio for sparse vectors holding the relative probabilities of output sig-
nals. The environment state identification engine and instruction emitting engine choose
whether to use sparse vectors or ordinary vectors based on this ratio. It must be a num-
ber in the range 0 to 1 inclusive. Value 0 indicates that both engines must always use
ordinary vectors. Value 1 indicates that both engines must always use sparse vectors. A
value between 0 and 1 indicates the maximum percentage (divided by 100) of non-zero
elements in sparse vectors relative to the numbers of vector dimensions. The function
qsmm_engine_create assigns this number to the field sparse_fill_max of qsmm_actor_
desc_s structure passed to the function qsmm_actor_create when creating both engines.

Note: if the field is_large_env or is_large_opt of this structure is non-
zero, or when loading large assembler programs specifying sparse probability
profiles into model nodes, forgetting to set the field sparse_fill_max to a
positive value, for example, 0.2 or 1, will cause bad model performance.

[Field]qsmm_rng_t rng
The handle of a random number generator the environment state identification engine
and instruction emitting engine will use. See Section 6.1 [Random Number Generators],
page 245, for how to create and destroy random number generators and perform other
operations on them. If this field is NULL, the function qsmm_create creates an instance of
default random number generator for use by both engines until model destruction.

[Field]struct qsmm_pair_sig_s * range_sig_env_la_p
The ranges of signal identifiers in the look-ahead signal segment. The field ngram_env_

la_sz of this structure specifies the length of that segment. The multinode model uses
those ranges to check the validity of that segment, to reduce the memory footprint of flat
storage if a small actor representing the environment state identification engine uses this
type of storage, and to reduce the number of nodes in the multinode model of a large actor
representing the engine. There can be other uses for the ranges in future QSMM versions.
Specify the ranges as precisely as possible to reduce the memory footprint of that engine.

If the field range_sig_env_la_p is not NULL, then this field must be the pointer to an array
holding ngram_env_la_sz elements, where each element is a pair (see Section 2.4 [Creating
an Actor], page 27, for a description of qsmm_pair_sig_s structure). The positions of
those elements are the positions of signal identifiers in the look-ahead signal segment. The

Chapter 4: Multinode Model 112

fields first and second of each pair define the minimum value and maximum value of a
corresponding signal identifier. The value of first must be less than or equal to the value
of second. The value of second must be less than the value of nsig_ngram_env_la field
of this structure. If range_sig_env_la_p is NULL, this condition means that every signal
in the segment lies in the range 0 (inclusive) to nsig_ngram_env_la (exclusive).

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_desc_s structure before setting the fields of this instance passed to the
function qsmm_create.

You can retrieve some initial model parameters later by the following functions.

[Function]int qsmm_get_use_instr_class_weights (qsmm t model)
This function returns a positive value if the function qsmm_node_call_default sets the
weights of output signals of the instruction emitting engine of a multinode model equal to
the weights of instruction classes of a currently executed node, and the functions qsmm_set_
instr_class_weight, qsmm_set_instr_class_weight_by_name_f, and qsmm_set_instr_

meta_class_weight support setting the weights of instruction classes. If qsmm_node_

call_default does not set the weights, and qsmm_set_instr_class_weight, qsmm_set_
instr_class_weight_by_name_f, and qsmm_set_instr_meta_class_weight report QSMM_
ERR_NOTSUP, the function qsmm_get_use_instr_class_weights returns 0. This function
returns a positive value if the field dont_use_instr_class_weights of qsmm_desc_s struc-
ture passed to the function qsmm_create was zero when creating the multinode model or
returns 0 if that field was non-zero. A returned value is always non-negative.

[Function]int qsmm_get_determ_opt (qsmm t model)
This function returns a positive value if the action emission matrices of all nodes of a multin-
ode model have the restriction to define only deterministic choices of assembler instruc-
tions in all node states. The function returns a positive value if the field is_determ_opt of
qsmm_desc_s structure passed to the function qsmm_create was non-zero when creating the
multinode model or returns 0 if that field was zero. A returned value is always non-negative.

[Function]int qsmm_get_nspur (qsmm t model)
This function returns the number of spur types of a multinode model. It is a number spec-
ified in the field nspur of qsmm_desc_s structure passed to the function qsmm_create when
creating the multinode model. A returned value is always positive.

[Function]int qsmm_get_stack_sz_max (qsmm t model)
This function returns the maximum allowed number of frames in the node call stack of a
multinodemodel. It is a number specified in the field stack_sz_max of qsmm_desc_s structure
passed to the function qsmm_create when creating the multinode model. A returned value
is always positive.

[Function]int qsmm_get_ngram_env_la_sz (qsmm t model)
This function returns the length of look-ahead signal segment of a multinode model. It is
length specified in the field ngram_env_la_sz of qsmm_desc_s structure passed to the function
qsmm_create when creating the multinode model. A returned value is always non-negative.

[Function]int qsmm_get_nsig_ngram_env_la (qsmm t model)
This function returns an upper bound on the identifier of every signal in the look-ahead signal
segment of a multinode model. It is a number specified in the field nsig_ngram_env_la of
qsmm_desc_s structure passed to the function qsmm_create when creating the multinode
model. A returned value is always non-negative.

Chapter 4: Multinode Model 113

4.2.2 Defining Instruction Meta-classes

An instruction meta-class represents an assembler instruction with a specific name and encap-
sulates logic associated with the instruction. The name of an instruction meta-class is the name
of an assembler instruction. Various instruction classes derived from the instruction meta-class
represent this assembler instruction followed by various parameter strings.

Every instruction meta-class has an event handler function processing the initialization of
instruction classes derived from the instruction meta-class and the invocation of instructions
belonging to those instruction classes during model execution. By default, the name of such
event handler function is the name of an instruction meta-class.

An instruction class has various identifiers including binary parameters and text parameters
convertible from the binary parameters. An instruction meta-class name along with the text
parameters converted to canonical form according to a set of rules, such as removing all white-
space characters from a parameter string, make up an instruction class name for identifying
instructions belonging to the instruction class in assembler programs.

The initialization of an instruction class by the event handler function of an instruction meta-
class typically includes setting the text parameters and the number of instruction outcomes. An
invoked assembler instruction sends its outcome to the environment state identification engine
to affect the identification of the next state of an assembler program encoding the environment.

4.2.2.1 Function Declaration

You should declare or define an instruction meta-class using the following macro.

[Macro]QSMM_INSTR_META_CLASS (instr_meta_class_name)
This macro declares the prototype of a function named instr meta class name that represents
an instruction meta-class with the same name and is the event handler function of this
instruction meta-class. You can prepend the macro with the static keyword to declare or
define the static function. A pointer to the function has the type qsmm_instr_meta_class_
func_t. The function has the return type int and the following arguments.

[Function argument]qsmm_t qsmm
The handle of a multinode model containing the instruction meta-class.

[Function argument]int qsmm_evt
The type of an event to process by the event handler function: QSMM_EVT_ENT_INIT, QSMM_
EVT_ENT_DONE, QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE, QSMM_EVT_
ENGINE_INIT, QSMM_EVT_ENGINE_DONE, or QSMM_EVT_ACTIVATE.

[Function argument]int qsmm_node
The identifier of an executed node. Is a valid identifier for an event QSMM_EVT_ACTIVATE.
For other events is equal to −1.

[Function argument]void * qsmm_param_p
The user parameter of this event handler function. Is equal to the corresponding argument
of qsmm_reg_instr_meta_class function called to register the instruction meta-class.

For example, declare the prototype of a static function representing the instruction meta-class
‘move’ as follows:

static QSMM_INSTR_META_CLASS(move);

Define the static function ‘move’ as follows:

static QSMM_INSTR_META_CLASS(move) {

...

}

Chapter 4: Multinode Model 114

[Data type]qsmm_instr_meta_class_func_t
This is a type of a pointer to the event handler function of an instruction meta-class. The
type has the following declaration:

typedef int

(*qsmm_instr_meta_class_func_t)(

qsmm_t qsmm,

int qsmm_evt,

int qsmm_node,

void *qsmm_param_p

);

See above for the description of arguments of that event handler function. To improve
compatibility with future versions of QSMM library, avoid declaring event handler functions
with this prototype explicitly—use the macro QSMM_INSTR_META_CLASS instead.

4.2.2.2 Event Handling

The event handler function of an instruction meta-class can process events with types represented
by the macros listed below. The argument qsmm_evt of that event handler function specifies an
event type.

[Macro]QSMM_EVT_ENT_INIT
Instruction meta-class initialization. The function qsmm_reg_instr_meta_class called to
register the instruction meta-class sends this event.

This event can trigger initial assignments to variables and allocating resources used by the
instruction meta-class for all model runs.

[Macro]QSMM_EVT_ENT_DONE
Instruction meta-class uninitialization. The function qsmm_destroy called to destroy the
multinode model sends this event to all registered instruction meta-class event handlers.

This event can trigger deallocating resources allocated on processing an event QSMM_EVT_

ENT_INIT.

[Macro]QSMM_EVT_INSTR_CLASS_INIT
Instruction class initialization. The function qsmm_reg_instr_class_v2 (see Section 4.2.3.4
[Registering Instruction Classes], page 127) called to register an instruction class derived
from the instruction meta-class sends this event. The event handler of an instruction class
set usually calls qsmm_reg_instr_class_v2 on processing an event QSMM_EVT_ENT_INIT to
register the instruction class as belonging to this instruction class set.

This event typically triggers the following operations:

– setting the text parameters of that instruction class by the function qsmm_set_eh_instr_

param_str_f if the instruction has parameters (see Section 4.2.2.6 [Setting Text Instruc-
tion Parameters], page 119);

– setting the number of instruction outcomes by the function qsmm_set_eh_noutcome if
the instruction has more than one outcome or should behave depending on the outcome
of the previous instruction invoked (see Section 4.2.2.7 [Setting the Number of Instruction
Outcomes], page 121).

[Macro]QSMM_EVT_INSTR_CLASS_DONE
Instruction class uninitialization. The function qsmm_destroy called to destroy the multin-
ode model sends this event to instruction meta-class event handlers for instruction classes
registered by the function qsmm_reg_instr_class_v2 and then sends the event QSMM_EVT_
ENT_DONE to those event handlers.

Chapter 4: Multinode Model 115

This event can trigger the uninitialization of binary instruction class parameters (see
Section 4.2.2.5 [Accessing Binary Instruction Parameters], page 118) and the deallocation
of additional resources associated with the instruction class allocated on processing an event
QSMM_EVT_INSTR_CLASS_INIT.

[Macro]QSMM_EVT_ENGINE_INIT
Model instance initialization. The function qsmm_engine_create called to create the model
instance sends this event to all registered instruction meta-class event handlers at the end of
execution of that function.

This event can trigger initial assignments to variables and allocating resources used by the
instruction meta-class for a current model run.

[Macro]QSMM_EVT_ENGINE_DONE
Model instance uninitialization. The function qsmm_engine_destroy called to destroy the
model instance sends this event to all registered instruction meta-class event handlers at
the beginning of execution of that function in reverse order relative to the order of send-
ing events QSMM_EVT_ENGINE_INIT. The function qsmm_engine_create calls qsmm_engine_
destroy implicitly when recreating the model instance. The function qsmm_destroy calls
qsmm_engine_destroy implicitly when destroying the multinode model.

This event can trigger deallocating resources allocated on processing an event QSMM_EVT_

ENGINE_INIT.

[Macro]QSMM_EVT_ACTIVATE
Instruction invocation. See Section 4.3.3 [Handling Instruction Invocation], page 152.

On successful completion, the event handler function shall return a non-negative value. A
specific non-negative value has no effect on model operation. On error, the event handler function
shall return a negative value. Such negative value causes the invocation of an error handler
function with passing QSMM_ERR_EVTHNDLR to it if the model has an error handler set.

4.2.2.3 Registering the Function

Use the following macro to register the event handler function of an instruction meta-class.

[Macro]QSMM_REG_INSTR_META_CLASS_PARAM (model, instr_meta_class_name,
paramp)

This macro registers an instruction meta-class instr meta class name for a multinode model.
The event handler function of this instruction meta-class will be receiving the parameter
paramp in the argument qsmm_param_p on all events. The macro QSMM_INSTR_META_CLASS

should previously define the instruction meta-class.

The macro QSMM_REG_INSTR_META_CLASS_PARAM expands to:

qsmm_reg_instr_meta_class((model), #instr_meta_class_name,

&instr_meta_class_name, (paramp))

Below there is the description of a function called by the macro QSMM_REG_INSTR_META_

CLASS_PARAM.

[Function]int qsmm_reg_instr_meta_class (qsmm t model, const char
*instr_meta_class_name, qsmm instr meta class func t
instr_meta_class_func, void *paramp)

This function registers an instruction meta-class instr meta class name for a multinode
model. The function instr meta class func is the event handler of this instruction meta-class.
That event handler will be receiving the parameter paramp in the argument qsmm_param_p
on all events.

Chapter 4: Multinode Model 116

A string instr meta class name must begin with an English letter or an underscore followed
by zero or more characters where each character is an English letter, a decimal digit, or an
underscore.

After registering the instruction meta-class, the function sends an event QSMM_EVT_ENT_INIT
to the event handler, and it can perform the initialization of that instruction meta-class.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The string instr meta class name has invalid format.

QSMM_ERR_EXIST

A program has already registered an instruction meta-class or instruction class
set named instr meta class name in the multinode model.

QSMM_ERR_UNTIMELY

The model instance already exists—cannot change model structure.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following function to get a pointer to the event handler of an instruction meta-class
and the user parameter of that event handler.

[Function]int qsmm_get_instr_meta_class_handler (qsmm t model, const char
*instr_meta_class_name, qsmm instr meta class func t
*instr_meta_class_func_p, void **param_pp)

This function retrieves the parameters of the event handler of an instruction meta-class in-
str meta class name registered for a multinodemodel. If instr meta class func p is not NULL,
the function sets *instr meta class func p to a pointer to that event handler. If param pp is
not NULL, the function sets *param pp to the value of qsmm_param_p argument of that event
handler passed on all events.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction meta-class instr meta class name not found.

QSMM_ERR_TYPE

An entity named instr meta class name is not an instruction meta-class. The
entity is an instruction class set.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

4.2.2.4 Instruction Class Identifiers

An instruction class has the following identifiers unique in various scopes:

• Binary parameters. This is the encoded form of parameters of an instruction class.

The function qsmm_reg_instr_class_v2 (see Section 4.2.3.4 [Registering Instruction
Classes], page 127) registers an instruction class and sets its binary parameters. That func-
tion sends an event QSMM_EVT_INSTR_CLASS_INIT to the event handler of a corresponding
instruction meta-class. This event can set the text parameters of this instruction class by the
function qsmm_set_eh_instr_param_str_f (see Section 4.2.2.6 [Setting Text Instruction
Parameters], page 119) based on the binary parameters. An event QSMM_EVT_INSTR_CLASS_
DONE sent on destroying the instruction class can uninitialize its binary parameters if they
address allocated memory blocks or reference other resources.

Chapter 4: Multinode Model 117

An event QSMM_EVT_ACTIVATE has access to the binary parameters of an instruction class to
quickly determine how to handle the invocation of an assembler instruction belonging to the
instruction class. See Section 4.2.2.5 [Accessing Binary Instruction Parameters], page 118,
for how to access the binary parameters of an instruction class on processing events QSMM_
EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE, and QSMM_EVT_ACTIVATE.

• Text parameters. This is the decoded form of parameters of an instruction class necessary
for identifying instructions belonging to the instruction class in assembler programs. The
text parameters have a canonical form obtained by applying a set of rules to a parameter
string, such as removing all whitespace characters from the string.

The function qsmm_set_eh_instr_param_str_f (see Section 4.2.2.6 [Setting Text Instruc-
tion Parameters], page 119) called on processing an event QSMM_EVT_INSTR_CLASS_INIT

usually sets the text parameters of an instruction class based on its binary parameters.
That function converts those text parameters to the canonical form.

• Name. An instruction meta-class name, the space character, and text instruction class
parameters in canonical form make up an instruction class name. This name is an assembler
instruction with parameters.

• Index. The ordinal number of an instruction class in an instruction class set (acting as
an instruction class list in this context). The function qsmm_reg_instr_class_v2 returns
that ordinal number after registering the instruction class. API functions provide access to
various parameters of an instruction class by its index.

• Output signal. The identifier of an output signal of the instruction emitting engine. Emit-
ting this output signal corresponds to emitting an assembler instruction belonging to the
instruction class. In future QSMM versions, that identifier will be equal to the index of the
instruction class (see above).

The following tuples containing identifiers of an instruction class are unique in the scope of
a multinode model:

• Instruction meta-class name, binary instruction class parameters—in the scope of an in-
struction class set.

• Instruction class set name, binary instruction class parameters—in the scope of an instruc-
tion meta-class.

• Instruction class name—in the scope of an instruction class set.

• Instruction class index—in the scope of an instruction class set. The function qsmm_reg_

instr_class_v2 finds a new index, so it is always unique.

• Output signal—in the scope of a node belonging to the node class represented by an in-
struction class set, including the nested scope of every state of this node. The output signal
biuniquely corresponds to the index of an instruction class in the instruction class set, so
the output signal is always unique.

The function qsmm_reg_instr_class_v2 registers an instruction class as belonging to an
instruction class set. Use the function described below to get the name of this instruction class
set when processing an event by the event handler of an instruction meta-class. You can also
use that function to get the name of an instruction class set when processing an event by the
event handler of this instruction class set.

[Function]int qsmm_get_eh_instr_class_set_name (qsmm t model, const char
**instr_class_set_name_pp)

This function retrieves the name of instruction class set of an event processed by an event
handler of a multinode model. If instr class set name pp is not NULL, the function sets
*instr class set name pp to the name of that instruction class set.

Chapter 4: Multinode Model 118

If the event handler of an instruction meta-class calls this function while processing an event
QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE, or QSMM_EVT_ACTIVATE, the
function retrieves the name of an instruction class set containing an instruction class asso-
ciated with the event. If the event handler of an instruction class set calls this function, it
retrieves the name of this instruction class set.

On success, the function returns a non-negative value. If the context of calling the function is
not the event handler of an instruction meta-class on processing an event QSMM_EVT_INSTR_
CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE, or QSMM_EVT_ACTIVATE and not the event han-
dler of an instruction class set, the function returns negative error code QSMM_ERR_UNTIMELY.

4.2.2.5 Accessing Binary Instruction Parameters

The function qsmm_reg_instr_class_v2 registers an instruction class and sets its binary pa-
rameters. The purpose of the following function is to fetch those binary parameters to a buffer
in the event handler of an instruction meta-class. The buffer might be a variable or a structure
instance.

[Function]int qsmm_get_eh_instr_param (qsmm t model, int bufsz, void *bufp)
This function fetches the binary parameters of an instruction class of a multinode model.
The function copies such parameters associated with a processed event to a buffer bufp with
size bufsz bytes. You can call this function from the event handler of an instruction meta-
class on processing an event QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE,
or QSMM_EVT_ACTIVATE.

The size bufsz must be greater than or equal to the size of binary parameters specified
when registering the instruction class by the function qsmm_reg_instr_class_v2. If bufsz is
greater than the size of binary parameters, the function leaves intact the remaining content
of bufp.

On success, the function returns the size of binary parameters copied to bufp. On failure,
the function returns a negative error code. Currently, the function can return the following
error codes.

QSMM_ERR_INVAL

The argument bufsz is less than the size of binary parameters specified when
registering the instruction class by the function qsmm_reg_instr_class_v2.

QSMM_ERR_UNTIMELY

The context of calling this function is not the event handler of an instruc-
tion meta-class on processing an event QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_
INSTR_CLASS_DONE, or QSMM_EVT_ACTIVATE.

Because the binary parameters of an instruction class are necessary when processing multiple
event types, it is reasonable to fetch those binary parameters at the beginning of an event handler
on processing events of those types. To prevent reporting QSMM_ERR_UNTIMELY and a possible
invocation of a model error handler because of an inappropriate event type, use the following
macro to check whether the type of an event is appropriate to call the function qsmm_get_eh_

instr_param.

[Macro]QSMM_HAS_INSTR_CLASS (evt)
This macro expands to:

((evt)==QSMM_EVT_INSTR_CLASS_INIT ||

(evt)==QSMM_EVT_INSTR_CLASS_DONE ||

(evt)==QSMM_EVT_ACTIVATE)

The purpose of this macro is to check whether an event of evt type has an associated instruc-
tion class, and it is safe to call the function qsmm_get_eh_instr_param and other functions
that use an instruction class context.

Chapter 4: Multinode Model 119

For example, to fetch the binary parameters of an instruction class at the beginning of
event handler of ‘move’ instruction meta-class, declare an enumeration for possible movement
directions and define the instruction meta-class as follows:

enum direct_e {

DIRECT_NORTH, // move one step up

DIRECT_EAST, // move one step right

DIRECT_SOUTH, // move one step down

DIRECT_WEST, // move one step left

DIRECT_COUNT // number of movement directions

};

...

static QSMM_INSTR_META_CLASS(move) {

enum direct_e direct=0;

if (QSMM_HAS_INSTR_CLASS(qsmm_evt))

qsmm_get_eh_instr_param(qsmm,sizeof(direct),&direct);

...

}

4.2.2.6 Setting Text Instruction Parameters

If the text parameters of an instruction class are not empty, then the event handler of a corre-
sponding instruction meta-class must set them on processing an event QSMM_EVT_INSTR_CLASS_
INIT. Use the following function to set the text parameters.

[Function]int qsmm_set_eh_instr_param_str_f (qsmm t model, const char *fmt,
...)

This function sets the text parameters of an instruction class associated with a processed
event. You can call this function from the event handler of a corresponding instruction
meta-class of a multinode model on processing an event QSMM_EVT_INSTR_CLASS_INIT. The
function formats the text parameters according to the argument fmt and subsequent argu-
ments. Their meaning is the same as in the function printf. After formatting, the function
converts the text parameters to a canonical form.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The text parameters have invalid format.

QSMM_ERR_UNTIMELY

The context of calling this function is not the event handler of an instruction
meta-class on processing an event QSMM_EVT_INSTR_CLASS_INIT.

QSMM_ERR_ILSEQ

Unable to convert the text parameters to a wide string according to a current
locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

For example, the following code block sets the text parameters of an instruction class derived
from the instruction meta-class ‘move’:

const char *ccp=0;

switch (direct) {

Chapter 4: Multinode Model 120

case DIRECT_NORTH: ccp="north"; break;

case DIRECT_EAST: ccp="east"; break;

case DIRECT_SOUTH: ccp="south"; break;

case DIRECT_WEST: ccp="west"; break;

default: assert(0);

}

if (ccp) qsmm_set_eh_instr_param_str_f(qsmm,"%s",ccp);

A call to qsmm_get_eh_instr_param can retrieve the content of direct earlier in the event
handler (see the example in Section 4.2.2.5 [Accessing Binary Instruction Parameters], page 118).

String Literals

The text parameters of an instruction class can contain string literals. You must enclose such
string literals in double quotes.

The character ‘\’ within a string literal is the escape character. In ‘\\’, the second ‘\’ is
not the escape character if the first ‘\’ is the escape character. Functions parsing string literals
convert every ‘\\’ with the first escape character to ‘\’.

The escape character is the beginning of an escape sequence. A three-digit octal character
code or ‘x’ and a two-digit hexadecimal character code can follow the escape character. The
functions parsing string literals convert such escape sequences to characters with those codes.
Additionally, the character ‘a’, ‘b’, ‘f’, ‘n’, ‘r’, ‘t’, ‘v’, ‘’’, or ‘"’ can follow the escape character;
the meaning of these escape sequences is the same as in the C programming language.

Canonical Form

The function qsmm_set_eh_instr_param_str_f converts the text parameters of an instruc-
tion class to a canonical form. All instruction classes derived from an instruction meta-class and
contained in an instruction class set have distinct text parameters in the canonical form. The
process of converting the text parameters to the canonical form consists of the following steps:

1. Convert a source string to a wide string according to a current locale.

2. Discard as a comment all characters in the wide string starting from the first character L‘;’
outside a string literal.

3. Remove all whitespace characters outside string literals.

4. Reformat all string literals by parsing them to the arrays of wide characters and formatting
the arrays by the following rules:

a. Replace the wide characters L‘\a’, L‘\b’, L‘\f’, L‘\n’, L‘\r’, L‘\t’, L‘\v’, L‘"’, and L‘\\’
with the corresponding escape sequences.

b. Replace other wide characters with codes less than 32 with corresponding octal escape
sequences.

c. Copy all other wide characters to the formatted string as is.

d. Enclose a resulting formatted string in double quotes.

Use the function described below to retrieve in the event handler of an instruction meta-class
the text parameters of an instruction class in the canonical form.

[Function]int qsmm_get_eh_instr_param_str (qsmm t model, const char
**param_str_pp)

This function fetches the text parameters of an instruction class associated with a processed
event. If param str pp is not NULL, the function sets *param str pp to the text parameters
in canonical form. A pointer returned in *param str pp is valid until the next call to this
function or the function qsmm_get_instr_class_param_str (see Section 4.2.3.4 [Registering
Instruction Classes], page 127) for the instruction class. You can call the function qsmm_get_

eh_instr_param_str from the event handler of an instruction meta-class of a multinode

Chapter 4: Multinode Model 121

model on processing an event QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE,
or QSMM_EVT_ACTIVATE.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_UNTIMELY

The context of calling this function is not the event handler of an instruc-
tion meta-class on processing an event QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_
INSTR_CLASS_DONE, or QSMM_EVT_ACTIVATE.

QSMM_ERR_ILSEQ

Unable to convert the text parameters in canonical form to a multibyte string
according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

4.2.2.7 Setting the Number of Instruction Outcomes

An instruction class has a specific number of instruction outcomes. Instructions belonging to the
instruction class can return those outcomes. A returned outcome may affect further execution
of an assembler program.

The number of instruction outcomes must be non-negative. Special value 0 indicates that an
instruction may analyze the outcome of previous instruction invoked, use that outcome as its
own outcome, or change it to a non-negative value less than the maximum number of outcomes
of instruction classes in the instruction class set. The default number of outcomes of every
instruction class is 1.

The purpose of the following function is to set the number of instruction outcomes on process-
ing an event QSMM_EVT_INSTR_CLASS_INIT by the event handler of an instruction meta-class.

[Function]int qsmm_set_eh_noutcome (qsmm t model, int noutcome)
This function sets the number of outcomes of an instruction class associated with a processed
event. You can call this function from the event handler of a corresponding instruction
meta-class of a multinode model on processing an event QSMM_EVT_INSTR_CLASS_INIT.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument noutcome is negative.

QSMM_ERR_UNTIMELY

The context of calling this function is not the event handler of an instruction
meta-class on processing an event QSMM_EVT_INSTR_CLASS_INIT.

Use the following function to get the number of outcomes of an instruction class associated
with an event processed by the event handler of an instruction meta-class.

[Function]int qsmm_get_eh_noutcome (qsmm t model)
This function returns the number of outcomes of an instruction class associated with a pro-
cessed event. You can call this function from the event handler of an instruction meta-class of
a multinode model on processing an event QSMM_EVT_INSTR_CLASS_INIT, QSMM_EVT_INSTR_
CLASS_DONE, or QSMM_EVT_ACTIVATE.

On success, the function returns a non-negative value. If the context of calling this function
is not the event handler of an instruction meta-class on processing an event QSMM_EVT_

INSTR_CLASS_INIT, QSMM_EVT_INSTR_CLASS_DONE, or QSMM_EVT_ACTIVATE, the function re-
turns negative error code QSMM_ERR_UNTIMELY.

Chapter 4: Multinode Model 122

4.2.2.8 Function Layout

A template for the event handler of an instruction meta-class:

QSMM_INSTR_META_CLASS(instr_meta_class_name) {

// TODO: declare (and possibly initialize) automatic variables used in

// a more than one "case" branch below.

struct ic_param_s ic_param;

// structure "ic_param_s" is for holding the binary parameters of

// an instruction class

if (QSMM_HAS_INSTR_CLASS(qsmm_evt))

qsmm_get_eh_instr_param(qsmm,sizeof(ic_param),&ic_param);

// fetch the binary parameters of an instruction class

struct model_param_s *const model_param_p=qsmm_get_ptr(qsmm,0);

// obtain model parameters specific to this model; a call

// qsmm_set_ptr(qsmm,0,ptr_p) should have set a pointer ptr_p

// addressing those parameters

switch (qsmm_evt) {

case QSMM_EVT_ENT_INIT:

// TODO: initialize variables and allocate resources used by

// the instruction meta-class for all model runs.

break;

case QSMM_EVT_ENT_DONE:

// TODO: deallocate resources allocated on QSMM_EVT_ENT_INIT.

break;

case QSMM_EVT_INSTR_CLASS_INIT:

qsmm_set_eh_instr_param_str_f(qsmm, fmt,

ic_param.field, ...);

// set the text parameters of an instruction class;

// you may access the fields of *model_param_p for

// model-specific information

qsmm_set_eh_noutcome(qsmm,noutcome);

// set the number of outcomes of this instruction class if

// that number is not equal to 1

break;

case QSMM_EVT_INSTR_CLASS_DONE:

// TODO: deallocate fields of "ic_param_s" (held in "ic_param")

// allocated before a call to "qsmm_reg_instr_class_v2";

// deallocate resources allocated on

// processing QSMM_EVT_INSTR_CLASS_INIT.

break;

case QSMM_EVT_ENGINE_INIT:

// TODO: initialize variables and allocate resources used by

// the instruction meta-class for a current model run.

break;

case QSMM_EVT_ENGINE_DONE:

// TODO: deallocate resources allocated on

// processing QSMM_EVT_ENGINE_INIT.

break;

case QSMM_EVT_ACTIVATE: {

struct stack_frame_s *stack_frame_p=0;

// structure "stack_frame_s" is for holding a user frame of

// node call stack

Chapter 4: Multinode Model 123

qsmm_get_stack_frame(qsmm,0,(void **) &stack_frame_p);

// obtain a current frame of node call stack

// TODO: perform custom actions that affect a system or

// environment and/or use parameters in *model_param_p,

// *stack_frame_p, or "ic_param".

qsmm_time_delta(qsmm,time_delta);

// increment continuous time

qsmm_spur_delta(qsmm,spur_type,spur_delta);

// increment spur

// qsmm_node_call_default(qsmm,node,param_p);

// call another node with optional parameters

qsmm_set_instr_outcome(qsmm,outcome);

// set an instruction outcome if the instruction class has

// multiple outcomes

// OR:

// qsmm_return_to_caller_node(qsmm);

// return control to a node that called a current node

// OR:

// QSMM_TERMINATE();

// terminate model execution

break;

}

}

return 0;

}

4.2.3 Defining Instruction Class Sets

An instruction class set is a container of instruction classes and a node class. The instruction
class set defines an assembler instruction set for nodes belonging to the node class and specifies
associated model behavior.

A name and event handler function specify an instruction class set. By default, the name of
such event handler function is the name of an instruction class set.

The event handler function typically processes the initialization of an instruction class set,
loading assembler programs into nodes of a node class represented by the instruction class set
on creating the model instance, and transferring control to the nodes and returning control from
them during model execution.

The initialization of an instruction class set typically includes adding instruction classes to
it, setting the maximum number of node states, and creating nodes belonging to the node class.

4.2.3.1 Function Declaration

You should declare or define an instruction class set using the following macro.

[Macro]QSMM_INSTR_CLASS_SET (instr_class_set_name)
This macro declares the prototype of a function named instr class set name that represents
an instruction class set with the same name and is the event handler function of this instruc-
tion class set. You can prepend the macro with the static keyword to declare or define the
static function. A pointer to the function has the type qsmm_instr_class_set_func_t. The
function has the return type int and the following arguments.

Chapter 4: Multinode Model 124

[Function argument]qsmm_t qsmm
The handle of a multinode model containing the instruction class set.

[Function argument]int qsmm_evt
The type of an event to process by the event handler function: QSMM_EVT_ENT_INIT,
QSMM_EVT_ENT_DONE, QSMM_EVT_ENGINE_INIT, QSMM_EVT_ENGINE_DONE, QSMM_EVT_NODE_
ENTER, or QSMM_EVT_NODE_LEAVE.

[Function argument]int qsmm_node
The identifier of a node that receives or returns control. Is a valid identifier for events
QSMM_EVT_NODE_ENTER and QSMM_EVT_NODE_LEAVE. For other events is equal to −1.

[Function argument]void * qsmm_param_p
The user parameter of this event handler function. For events QSMM_EVT_ENT_INIT, QSMM_
EVT_ENT_DONE, QSMM_EVT_ENGINE_INIT, and QSMM_EVT_ENGINE_DONE, the parameter is
equal to the corresponding argument of qsmm_reg_instr_class_set function invoked to
register the instruction class set. For events QSMM_EVT_NODE_ENTER and QSMM_EVT_NODE_

LEAVE, the parameter is equal to the corresponding argument of qsmm_node_call_default
function invoked to call the node.

For example, declare the prototype of a static function representing the instruction class set
‘walker’ as follows:

static QSMM_INSTR_CLASS_SET(walker);

Define the static function ‘walker’ as follows:

static QSMM_INSTR_CLASS_SET(walker) {

...

}

[Data type]qsmm_instr_class_set_func_t
This is a type of a pointer to the event handler function of an instruction class set. The type
has the following declaration:

typedef int

(*qsmm_instr_class_set_func_t)(

qsmm_t qsmm,

int qsmm_evt,

int qsmm_node,

void *qsmm_param_p

);

See above for a description of arguments of that event handler function. To improve com-
patibility with future versions of QSMM library, avoid declaring event handler functions with
this prototype explicitly—use the macro QSMM_INSTR_CLASS_SET instead.

4.2.3.2 Event Handling

The event handler function of an instruction class set can process events with types represented
by the macros listed below. The argument qsmm_evt of that event handler function specifies an
event type.

[Macro]QSMM_EVT_ENT_INIT
Instruction class set initialization. The function qsmm_reg_instr_class_set called to reg-
ister the instruction class set sends this event.

This event can trigger the following operations:

1. Register instruction classes belonging to the instruction class set by the macros QSMM_
REG_INSTR_CLASS and QSMM_REG_INSTR_CLASS_PARAM. See Section 4.2.3.4 [Registering
Instruction Classes], page 127.

Chapter 4: Multinode Model 125

2. Register controlled probability variables by the macro QSMM_REG_VAR_PROB. See
Section 5.9.2 [Controlled Variables], page 210.

3. Set the maximum number of states of nodes belonging to a node class represented by the
instruction class set by the function qsmm_set_nstate_max. See Section 4.2.3.5 [Setting
the Number of States], page 133.

4. Create nodes belonging to the node class by the function qsmm_node_create_v2 or macro
QSMM_NODE_CREATE and set the number of states of each created node to a required value
by the function qsmm_set_node_nstate. See Section 4.2.5 [Creating Nodes], page 139.

5. Associate user parameters with created nodes by the function qsmm_set_node_ptr. See
Section 4.2.7 [Associating Parameters with a Model], page 146.

This event can also trigger initial assignments to variables and allocating resources used by
the instruction class set for all model runs.

[Macro]QSMM_EVT_ENT_DONE
Instruction class set uninitialization. The function qsmm_destroy called to destroy the
multinode model sends this event to all registered event handlers of instruction class sets.

This event can trigger deallocating resources allocated on processing an event QSMM_EVT_

ENT_INIT.

[Macro]QSMM_EVT_ENGINE_INIT
Model instance initialization. The function qsmm_engine_create called to create the model
instance sends this event to all registered event handlers of instruction class sets at the end
of execution of that function.

This event can trigger the following operations:

1. Load assembler programs into nodes by the function qsmm_node_asm. See Section 5.8
[Loading a Parsed Program into a Node], page 203.

2. Clone node probability profiles by the function qsmm_node_profile_clone. See
Section 5.10 [Cloning the Probability Profile], page 224.

3. Clone node probability profiles in deferred mode by the function qsmm_set_node_

profile_source. See Section 5.11 [Memory Efficient Cloning the Probability Profile],
page 226.

4. Set parameters of actors representing the environment state identification engine and
instruction emitting engine. See Section 4.2.6 [Creating the Model Instance], page 143.

This event can also trigger initial assignments to variables and allocating resources used by
the instruction class set for a current model run.

[Macro]QSMM_EVT_ENGINE_DONE
Model instance uninitialization. The function qsmm_engine_destroy called to destroy the
model instance sends this event to all registered event handlers of instruction class sets at
the beginning of execution of that function in reverse order relative to the order of send-
ing events QSMM_EVT_ENGINE_INIT. The function qsmm_engine_create calls qsmm_engine_
destroy implicitly when recreating the model instance. The function qsmm_destroy calls
qsmm_engine_destroy implicitly when destroying the multinode model.

This event can trigger accumulating statistics collected during a current model run and
deallocating resources allocated on processing an event QSMM_EVT_ENGINE_INIT.

[Macro]QSMM_EVT_NODE_ENTER
Transferring control to a node belonging to a node class represented by the instruction class
set. The function qsmm_node_call_default sends this event on calling a node. The event
handler receives the identifier of this node via the argument qsmm_node and a user parameter

Chapter 4: Multinode Model 126

of qsmm_node_call_default via the argument qsmm_param_p. Before sending this event to
the event handler, qsmm_node_call_default creates a frame in the node call stack comprised
of a system frame and, if user frame size is positive, a user frame.

This event can trigger the initialization of this user frame and setting its fields according to
the argument qsmm_param_p.

[Macro]QSMM_EVT_NODE_LEAVE
Returning control from a node belonging to a node class represented by the instruction class
set. The function qsmm_node_call_default sends this event on finishing calling a node.
The event handler receives the identifier of this node via the argument qsmm_node and a user
parameter of qsmm_node_call_default via the argument qsmm_param_p. After sending this
event to the event handler, qsmm_node_call_default destroys a current frame in the node
call stack comprised of a system frame and, if user frame size is positive, a user frame.

This event can trigger setting a value addressed by qsmm_param_p according to the fields of
this user frame with its subsequent uninitialization.

On successful completion, the event handler function shall return a non-negative value. A
specific non-negative value has no effect on model operation. On error, the event handler function
shall return a negative value. Such negative value causes the invocation of an error handler
function with passing QSMM_ERR_EVTHNDLR to it if the model has an error handler set.

The name of an instruction class set and the name of its event handler function can be different
in special cases. Use the function qsmm_get_eh_instr_class_set_name to get the name of an
instruction class set while processing an event by the event handler of this instruction class set.

4.2.3.3 Registering the Function

Use the following macro to register the event handler function of an instruction class set.

[Macro]QSMM_REG_INSTR_CLASS_SET_PARAM (model, instr_class_set_name,
paramp)

This macro registers an instruction class set instr class set name for a multinode model. The
event handler function of this instruction class set will be receiving the parameter paramp
in the argument qsmm_param_p on events QSMM_EVT_ENT_INIT, QSMM_EVT_ENT_DONE, QSMM_
EVT_ENGINE_INIT, and QSMM_EVT_ENGINE_DONE. The macro QSMM_INSTR_CLASS_SET should
previously define the instruction class set.

The macro QSMM_REG_INSTR_CLASS_SET_PARAM expands to:

qsmm_reg_instr_class_set((model), #instr_class_set_name,

&instr_class_set_name, (paramp))

Below there is the description of a function called by the macro QSMM_REG_INSTR_CLASS_

SET_PARAM.

[Function]int qsmm_reg_instr_class_set (qsmm t model, const char
*instr_class_set_name, qsmm instr class set func t
instr_class_set_func, void *paramp)

This function registers an instruction class set instr class set name for a multinode model.
The function instr class set func is the event handler of this instruction class set. That event
handler will be receiving the parameter paramp in the argument qsmm_param_p on events
QSMM_EVT_ENT_INIT, QSMM_EVT_ENT_DONE, QSMM_EVT_ENGINE_INIT, and QSMM_EVT_ENGINE_

DONE.

After registering the instruction class set, the function sends an event QSMM_EVT_ENT_INIT
to the event handler, and it can perform the initialization of that instruction class set.

Chapter 4: Multinode Model 127

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_EXIST

A program has already registered an instruction class set or instruction meta-class
named instr class set name in the multinode model.

QSMM_ERR_UNTIMELY

The model instance already exists—cannot change model structure.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following function to get a pointer to the event handler of an instruction class set
and a user parameter passed to that event handler in certain cases.

[Function]int qsmm_get_instr_class_set_handler (qsmm t model, const char
*instr_class_set_name, qsmm instr class set func t
*instr_class_set_func_p, void **param_pp)

This function retrieves the parameters of the event handler of an instruction class set in-
str class set name registered for a multinode model. If instr class set func p is not NULL,
the function sets *instr class set func p to a pointer to that event handler. If param pp is not
NULL, the function sets *param pp to the value of qsmm_param_p argument of that event han-
dler passed on events QSMM_EVT_ENT_INIT, QSMM_EVT_ENT_DONE, QSMM_EVT_ENGINE_INIT,
and QSMM_EVT_ENGINE_DONE.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name not found.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

4.2.3.4 Registering Instruction Classes

Every instruction class is an entity related to two other entities: an instruction meta-class and
instruction class set. An instruction class is a subclass of an instruction meta-class and is an
element of an instruction class set. Identical subclasses of an instruction meta-class can be the
elements of multiple instruction class sets. Registering an instruction class must not violate
uniqueness constraints listed in Section 4.2.2.4 [Instruction Class Identifiers], page 116.

Use the following function to register an instruction class.

[Function]int qsmm_reg_instr_class_v2 (qsmm t model, const char
*instr_meta_class_name, const char *instr_class_set_name, int rez1,
size t param_bin_sz, const void *param_bin_p, qsmm sig t
*instr_class_p)

This function registers an instruction class of a multinode model. The instruction class
becomes a subclass of instr meta class name instruction meta-class and an element of in-
str class set name instruction class set. The arguments param bin p and param bin sz
specify the content and size in bytes of a buffer with binary instruction class parameters. The
function copies the buffer to an internal structure. If param bin sz is 0, then param bin p
can be NULL. The argument rez1 is for future use and must be equal to 0.

Chapter 4: Multinode Model 128

The function sends an event QSMM_EVT_INSTR_CLASS_INIT to an instruction meta-class event
handler. This event can trigger setting text instruction class parameters by the function
qsmm_set_eh_instr_param_str_f and the number of instruction outcomes by the function
qsmm_set_eh_noutcome.

On success, the function returns a non-negative value and, if instr class p is not NULL, sets
*instr class p to an instruction class index—a number that uniquely identifies a registered
instruction class in the instruction class set. On failure, the function returns a negative error
code. Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction meta-class instr meta class name or instruction class set in-
str class set name does not exist.

QSMM_ERR_TYPE

An entity named instr meta class name is not an instruction meta-class, or an
entity named instr class set name is not an instruction class set.

QSMM_ERR_EXIST

The instruction class set instr class set name already contains an instruction
class derived from the instruction meta-class instr meta class name with the
same binary or text parameters. The arguments param bin p and param bin sz
specify the binary parameters. The instruction meta-class event handler can
set the text parameters by the function qsmm_set_eh_instr_param_str_f on
processing an event QSMM_EVT_INSTR_CLASS_INIT sent by the function qsmm_

reg_instr_class_v2.

QSMM_ERR_UNTIMELY

The model instance already exists—cannot change model structure.

QSMM_ERR_VIOLNODE

There exist nodes belonging to a node class represented by the instruction class
set instr class set name—cannot change the instruction class set.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following macros to register an instruction class belonging to an instruction class set
in the event handler of this instruction class set on processing an event QSMM_EVT_ENT_INIT.
The macros expect that the name of the event handler function is equal to the name of the
instruction class set and the variable qsmm holding the handle of a multinode model is accessible
in the event handler function. Normally, that variable is an event handler function argument.

[Macro]QSMM_REG_INSTR_CLASS (meta_class_name)
This macro registers an instruction class derived from an instruction meta-class
meta class name without binary parameters.

The macro expands to:

qsmm_reg_instr_class_v2((qsmm),#meta_class_name,__FUNCTION__,0,0,0,0)

[Macro]QSMM_REG_INSTR_CLASS_PARAM (meta_class_name, param_bin)
This macro registers an instruction class derived from an instruction meta-class
meta class name with binary parameters in a variable param bin.

The macro expands to:

qsmm_reg_instr_class_v2((qsmm), #meta_class_name, __FUNCTION__, 0,

sizeof(param_bin), &(param_bin), 0)

Chapter 4: Multinode Model 129

The binary parameters of an instruction class to register by the macro QSMM_REG_INSTR_

CLASS_PARAM must be a variable and not a constant. This is because the macro takes the
address of a variable using ‘&’. If you need to specify a constant as the binary parameters,
assign the constant to a variable of an appropriate type and pass this variable to QSMM_REG_

INSTR_CLASS_PARAM.

For example, to use the element DIRECT_NORTH of direct_e enumeration mentioned in
Section 4.2.2.5 [Accessing Binary Instruction Parameters], page 118, as a binary parameter
of an instruction class derived from the instruction meta-class ‘move’, write:

const enum direct_e direct=DIRECT_NORTH;

QSMM_REG_INSTR_CLASS_PARAM(move,direct);

Use the following lines to register instruction classes derived from the instruction meta-class
‘move’ for all movement directions declared by the enumeration direct_e:

for (enum direct_e direct=0; direct<DIRECT_COUNT; direct++)

QSMM_REG_INSTR_CLASS_PARAM(move,direct);

Use the following function to get the total number of instruction classes contained in an
instruction class set. An instruction class index returned by the function qsmm_reg_instr_

class_v2 is never greater than or equal to the size of an instruction class set.

[Function]int qsmm_get_instr_class_set_sz_v2 (qsmm t model, const char
*instr_class_set_name, int rez1, unsigned int flags, qsmm sig t
*n_instr_class_p)

This function retrieves the number of instruction classes contained in an instruction class set
instr class set name in a multinode model.

If flags contain bitmask QSMM_EXCEPT_NOTFOUND, and the instruction class set does not exist,
the function reports QSMM_ERR_NOTFOUND. If flags contain bitmask QSMM_EXCEPT_TYPE, and
an entity named instr class set name is not an instruction class set, the function reports
QSMM_ERR_TYPE. Bitmask QSMM_EXCEPT_ALL includes QSMM_EXCEPT_NOTFOUND and QSMM_

EXCEPT_TYPE.

The argument rez1 is for future use and must be equal to 0.

On success, the function returns a non-negative value and sets *n instr class p if
n instr class p is not NULL. If an entity named instr class set name exists and is an
instruction class set, the function sets *n instr class p to the number of instruction
classes in the instruction class set. If the entity does not exist, and flags do not contain
QSMM_EXCEPT_NOTFOUND, the function sets *n instr class p to QSMM_SIG_INVALID. If the
entity exists but is not an instruction class set, and flags do not contain QSMM_EXCEPT_TYPE,
the function sets *n instr class p to QSMM_SIG_INVALID.

If n instr class p is not NULL, and *n instr class p is 0 or QSMM_SIG_INVALID or would be set
to one of these values if n instr class p were not NULL, the function returns 0. If the instruc-
tion class set contains a single instruction class, the function returns 1. If the instruction
class set contains multiple instruction classes, the function returns 2.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist. The function re-
ports this error if flags include bitmask QSMM_EXCEPT_NOTFOUND. Otherwise, the
function sets *n instr class p to QSMM_SIG_INVALID (if n instr class p is not
NULL) and returns 0.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity is
an instruction meta-class. The function reports this error if flags include bitmask

Chapter 4: Multinode Model 130

QSMM_EXCEPT_TYPE. Otherwise, the function sets *n instr class p to QSMM_SIG_

INVALID (if n instr class p is not NULL) and returns 0.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to get an instruction class index by an instruction class name.

[Function]int qsmm_find_instr_class_in_set_f_v2 (qsmm t model, qsmm sig t
*instr_class_p, const char *instr_class_set_name, int rez1, unsigned
int flags, const char *fmt, ...)

[Function]int qsmm_find_instr_class_in_set_fv_v2 (qsmm t model,
qsmm sig t *instr_class_p, const char *instr_class_set_name, int rez1,
unsigned int flags, const char *fmt, va list ap)

These functions retrieve the index of an instruction class in an instruction class set in-
str class set name in a multinode model by the name of the instruction class. That index as
well as name in canonical form uniquely identify the instruction class in the instruction class
set. An instruction meta-class name optionally followed by at least one whitespace character
and text instruction class parameters make up an instruction class name.

The function qsmm_find_instr_class_in_set_f_v2 formats an instruction class name ac-
cording to the argument fmt and subsequent arguments interpreted as in the function printf.
The function qsmm_find_instr_class_in_set_fv_v2 formats an instruction class name ac-
cording to the arguments fmt and ap interpreted as in the function vprintf.

Before searching the instruction class in the set, the functions convert the formatted name to
canonical form: they remove whitespace characters before the instruction meta-class name,
replace whitespace characters after the instruction meta-class name with a single space charac-
ter, and convert the text parameters of that instruction class to their canonical form according
to rules described in Section 4.2.2.6 [Setting Text Instruction Parameters], page 119.

If flags contain bitmask QSMM_EXCEPT_NOTFOUND, and the instruction class not found in the
instruction class set, the functions report QSMM_ERR_NOTFOUND. The argument rez1 is for
future use and must be equal to 0.

On success, the functions return a non-negative value and set *instr class p if instr class p
is not NULL. If the instruction class found in the instruction class set, the functions set
*instr class p to the index of that instruction class. If the instruction class set exists, but
the instruction class not found in it, and flags do not contain QSMM_EXCEPT_NOTFOUND, the
functions set *instr class p to QSMM_SIG_INVALID.

On failure, the functions return a negative error code. Currently, the functions can return
the following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist, or the instruction
class not found in the instruction class set. In the latter case, the functions
report this error if flags include bitmask QSMM_EXCEPT_NOTFOUND; otherwise, the
functions set *instr class p to QSMM_SIG_INVALID (if instr class p is not NULL)
and return a non-negative value.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_INVAL

An instruction class name has invalid format.

Chapter 4: Multinode Model 131

QSMM_ERR_ILSEQ

Unable to convert an instruction class name to a wide string according to a
current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to get information about an instruction class specified by its
index.

[Function]int qsmm_get_instr_class_name (qsmm t model, const char
*instr_class_set_name, qsmm sig t instr_class, const char
**instr_class_name_pp)

This function retrieves the canonicalized name of an instruction class specified by its in-
dex instr class in an instruction class set instr class set name in a multinode model. That
canonicalized name is the name of an instruction meta-class optionally followed by the space
character and the text parameters of this instruction class in their canonical form. The func-
tion sets *instr class name pp to the canonicalized name if instr class name pp is not NULL.
A pointer returned in *instr class name pp is valid until the next call to this function for
this instruction class.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set instr class set name.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_ILSEQ

Unable to convert the canonicalized name of an instruction class to a multibyte
string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_get_instr_class_meta_name (qsmm t model, const char
*instr_class_set_name, qsmm sig t instr_class, const char
**instr_meta_class_name_pp)

This function retrieves the name of the instruction meta-class of an instruction class spec-
ified by its index instr class in an instruction class set instr class set name in a multinode
model. The function sets *instr meta class name pp to the instruction meta-class name if
instr meta class name pp is not NULL.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set instr class set name.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

Chapter 4: Multinode Model 132

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_get_instr_class_param_str (qsmm t model, const char
*instr_class_set_name, qsmm sig t instr_class, const char
**param_str_pp)

This function retrieves the canonicalized text parameters of an instruction class specified by
its index instr class in an instruction class set instr class set name in a multinode model.
The function sets *param str pp to the canonicalized text parameters if param str pp is
not NULL. If the instruction class does not have text parameters, or its canonicalized text
parameters are the empty string, the function sets *param str pp to NULL. A pointer returned
in *param str pp is valid until the next call to this function or the function qsmm_get_eh_

instr_param_str for the instruction class.

If the canonicalized text parameters have positive length, the function returns a positive value.
If the instruction class does not have text parameters, or its canonicalized text parameters
are the empty string, the function returns 0. On failure, the function returns a negative error
code. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set instr class set name.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_ILSEQ

Unable to convert the canonicalized text parameters of an instruction class to a
multibyte string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_get_instr_class_param_bin (qsmm t model, const char
*instr_class_set_name, qsmm sig t instr_class, size t
*param_bin_sz_p, const void **param_bin_pp)

This function retrieves the binary parameters of an instruction class specified by its in-
dex instr class in an instruction class set instr class set name in a multinode model. If
param bin sz p is not NULL, the function sets *param bin sz p to the size of those binary
parameters in bytes. If param bin pp is not NULL, the function sets *param bin pp to a
pointer to those binary parameters. If the instruction class does not have binary parameters
(i.e. their size is 0), the function sets *param bin pp to NULL.

If the instruction class has binary parameters (i.e. their size is positive), the function returns
a positive value. If the instruction class does not have binary parameters, the function returns
0. On failure, the function returns a negative error code. Currently, the function can return
the following error codes.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set instr class set name.

Chapter 4: Multinode Model 133

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_get_instr_class_noutcome_v2 (qsmm t model, const char
*instr_class_set_name, int rez1, qsmm sig t instr_class, qsmm sig t
*noutcome_p)

This function retrieves the number of outcomes of an instruction class specified by its in-
dex instr class in an instruction class set instr class set name in a multinode model. If
noutcome p is not NULL, the function sets *noutcome p to the number of outcomes. That
number equal to 0 has special meaning described in Section 4.2.2.7 [Setting the Number of
Instruction Outcomes], page 121. The argument rez1 is for future use and must be equal to
0.

If the instruction class has multiple outcomes, the function returns 2. If the instruction class
has a single outcome, the function returns 1. If the instruction class has special number of
outcomes 0, the function returns 0. On failure, the function returns a negative error code.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set instr class set name.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

4.2.3.5 Setting the Number of States

Every node of a multinode model has a certain number of states. One of those states is a current
node state. It changes deterministically or stochastically by the environment state identification
engine according to the input from the instruction emitting engine and instruction execution
environment: the index of last invoked instruction, its outcome, and the look-ahead signal
segment if the multinode model uses that segment.

A prerequisite for successful learning a state model by a node is that it has a sufficient
number of states. On the other hand, the more states a node has, the more instructions the
node generally needs to execute to learn a state model.

The number of states of a just created node is equal to the number of states specified for the
node class (represented by an instruction class set) of this node. The number of states specified
for the node class is the default number of states for newly created nodes and, at the same time,
the maximum allowed number of states of nodes belonging to the node class. After creating a
node, you can change its number of states to a value less than maximum allowed one.

Use the following functions to retrieve or set the maximum number of states for a node class.

Chapter 4: Multinode Model 134

[Function]int qsmm_get_nstate_max_v2 (qsmm t model, const char
*node_class_name, int rez1, unsigned int flags, qsmm sig t *nstate_p)

This function retrieves the maximum allowed number of states of nodes belonging to a node
class of a multinode model. That number is also the default number of states for newly
created nodes belonging to the node class. An instruction class set named node class name
represents the node class.

If flags contain bitmask QSMM_EXCEPT_NOTFOUND, and the instruction class set does not exist,
the function reports QSMM_ERR_NOTFOUND. If flags contain bitmask QSMM_EXCEPT_TYPE, and
an entity named node class name is not an instruction class set, the function reports QSMM_
ERR_TYPE. Bitmask QSMM_EXCEPT_ALL includes QSMM_EXCEPT_NOTFOUND and QSMM_EXCEPT_

TYPE.

The argument rez1 is for future use and must be equal to 0.

On success, the function returns a non-negative value and sets *nstate p if nstate p is not
NULL. If an entity named node class name exists and is an instruction class set, the function
sets *nstate p to the maximum allowed number of states for the instruction class set. If
the entity does not exist, and flags do not contain QSMM_EXCEPT_NOTFOUND, the function sets
*nstate p to QSMM_SIG_INVALID. If the entity exists but is not an instruction class set, and
flags do not contain QSMM_EXCEPT_TYPE, the function sets *nstate p to QSMM_SIG_INVALID.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NOTFOUND

The instruction class set node class name does not exist. The function reports
this error if flags include bitmask QSMM_EXCEPT_NOTFOUND. Otherwise, the func-
tion sets *nstate p to QSMM_SIG_INVALID (if nstate p is not NULL) and returns a
non-negative value.

QSMM_ERR_TYPE

An entity named node class name is not an instruction class set. The entity
is an instruction meta-class. The function reports this error if flags include
bitmask QSMM_EXCEPT_TYPE. Otherwise, the function sets *nstate p to QSMM_

SIG_INVALID (if nstate p is not NULL) and returns a non-negative value.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_set_nstate_max (qsmm t model, const char
*node_class_name, qsmm sig t nstate)

This function sets to nstate the maximum allowed number of states of nodes belonging to a
node class of a multinode model. That number is also the default number of states for newly
created nodes belonging to the node class. An instruction class set named node class name
represents the node class.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument nstate is less than 2.

QSMM_ERR_NOTFOUND

The instruction class set node class name does not exist.

QSMM_ERR_TYPE

An entity named node class name is not an instruction class set. The entity is
an instruction meta-class.

Chapter 4: Multinode Model 135

QSMM_ERR_VIOLAP

The model instance exists, and nstate is greater than the number of states of
the environment state identification engine. On creating the model instance,
the function qsmm_engine_create creates that engine with the number of states
equal to a maximum number among the maximum allowed numbers of states
specified by qsmm_set_nstate_max for all instruction class sets in the multinode
model.

QSMM_ERR_VIOLNODE

The argument nstate is less than the number of states of one or more already
created nodes belonging to the node class.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The default number of states for newly registered instruction class sets is 2.

4.2.3.6 Function Layout

A template for the event handler of an instruction class set:

static QSMM_INSTR_CLASS_SET(instr_class_set_name) {

// TODO: declare (and possibly initialize) automatic variables used in

// a more than one "case" branch below.

struct stack_frame_s *stack_frame_p=0;

// structure "stack_frame_s" represents a user stack frame

struct node_param_s *node_param_p;

// structure "node_param_s" holds user parameters

// associated with a node

struct model_param_s *const model_param_p=qsmm_get_ptr(qsmm,0);

// obtain model parameters specific to this model; a call

// qsmm_set_ptr(qsmm,0,ptr_p) should have set a pointer ptr_p

// addressing those parameters

switch (qsmm_evt) {

case QSMM_EVT_ENT_INIT:

// Register instruction classes.

QSMM_REG_INSTR_CLASS(meta_class_1);

QSMM_REG_INSTR_CLASS(meta_class_2);

// ...

QSMM_REG_INSTR_CLASS_PARAM(meta_class_a,var_a);

QSMM_REG_INSTR_CLASS_PARAM(meta_class_b,var_b);

// ...

qsmm_set_nstate_max(qsmm,__FUNCTION__,nstate);

// set the maximum allowed and default number of

// states for nodes belonging to this node class

// Create the nodes.

QSMM_NODE_CREATE(node1);

QSMM_NODE_CREATE(node2);

// ...

QSMM_NODE_CREATE(nodeN);

// Associate user parameters with created nodes. The pointers

Chapter 4: Multinode Model 136

// ptr1, ptr2, ..., ptrN reference allocated and initialized

// instances of "node_param_s" structure.

qsmm_set_node_ptr(qsmm,node1,0,ptr1);

qsmm_set_node_ptr(qsmm,node2,0,ptr2);

// ...

qsmm_set_node_ptr(qsmm,nodeN,0,ptrN);

// TODO: initialize variables and allocate resources used by

// the instruction class set for all model runs.

// TODO: perform other initialization procedures.

break;

case QSMM_EVT_ENT_DONE:

// TODO: deallocate resources allocated on QSMM_EVT_ENT_INIT.

break;

case QSMM_EVT_ENGINE_INIT:

// Load assembler programs into nodes.

qsmm_node_asm(qsmm,node1,0,prg1,msglist);

qsmm_node_asm(qsmm,node2,0,prg2,msglist);

// ...

qsmm_node_asm(qsmm,nodeN,0,prgN,msglist);

// TODO: set the parameters of actors representing the

// environment state identification engine and

// instruction emitting engine.

// TODO: initialize variables and allocate resources used by

// the instruction class set for a current model run.

break;

case QSMM_EVT_ENGINE_DONE:

// TODO: accumulate statistics collected during a current model

// run and deallocate resources allocated on

// processing QSMM_EVT_ENGINE_INIT.

break;

case QSMM_EVT_NODE_ENTER:

node_param_p=qsmm_get_node_ptr(qsmm,qsmm_node,0);

// obtain the parameters of an executed node

qsmm_get_stack_frame(qsmm,0,(void **) &stack_frame_p);

// obtain a current frame of node call stack

// TODO: initialize *stack_frame_p, possibly according to

// *node_param_p, *model_param_p, and the content of a

// structure addressed by qsmm_param_p.

break;

Chapter 4: Multinode Model 137

case QSMM_EVT_NODE_LEAVE:

node_param_p=qsmm_get_node_ptr(qsmm,qsmm_node,0);

// obtain the parameters of an executed node

qsmm_get_stack_frame(qsmm,0,(void **) &stack_frame_p);

// obtain a current frame of node call stack

// TODO: set the content of a structure addressed by

// qsmm_param_p according to *stack_frame_p and,

// possibly, *node_param_p* and *model_param_p* and

// uninitialize *stack_frame_p.

break;

}

return 0;

}

4.2.4 Node Parameters

A model node has the following basic parameters:

1. Node identifier (index) in the scope of a multinode model. The function qsmm_node_

create_v2 and the macro QSMM_NODE_CREATE create a node with a specified identifier.
The function qsmm_node_create_v2 can find an unused identifier for a new node. See
Section 4.2.5 [Creating Nodes], page 139.

2. The number of states. The function qsmm_set_nstate_max called for a node class the node
belongs to specifies the default number of node states. That number is also the maximum
allowed number of node states. The function qsmm_set_node_nstate can set the number
of node states to a lesser value.

3. An instruction class set specifying a node class for the node. The function qsmm_node_

create_v2 has an argument for the name of an instruction class set. The macro QSMM_

NODE_CREATE uses ‘__FUNCTION__’ as the name of an instruction class set.

4. User parameters specified by pointers. The function qsmm_set_node_ptr associates a user
pointer with a node. See Section 4.2.7 [Associating Parameters with a Model], page 146.

5. A list of controlled probability variables taken from an instruction class set. The function
qsmm_reg_var_prob and the macro QSMM_REG_VAR_PROB register a controlled probability
variable for the instruction class set. Every list element includes the name of a controlled
probability variable, its index, and a probability value. The function qsmm_set_node_

var_prob sets the probability value for the node. The initial probability value is 0. See
Section 5.9.2 [Controlled Variables], page 210.

6. The weights of all instruction classes of an instruction class set. The functions qsmm_

set_instr_class_weight, qsmm_set_instr_class_weight_by_name_f, and qsmm_set_

instr_meta_class_weight change those weights for the node. By default, all weights
are equal to 1. See Section 4.3.5 [Setting Instruction Classes Weights], page 155.

The existence of model nodes is unrelated to the existence of model instance (see Section 4.2.6
[Creating the Model Instance], page 143). However, when the model instance exists, the node
has extended parameters:

1. The state transition matrix along with collected statistics for refilling the matrix and keeping
it up-to-date maintained by the environment state identification engine. The identifiers
of rows of that matrix are quadruples consisting of a previous node state, the index of
instruction class of last instruction invoked by the node, the outcome of this instruction,
and the content of look-ahead signal segment. The identifiers of columns of that matrix are
the indices of next node states. The cells of that matrix hold state transition probabilities
with types declared by the enumeration qsmm_prob_e. See Section 4.4.1 [Dumping the State
Transition Matrix], page 162.

Chapter 4: Multinode Model 138

2. The action emission matrix along with collected statistics for refilling the matrix and keeping
it up-to-date maintained by the instruction emitting engine. The identifiers of rows of that
matrix are the indices of node states. The identifiers of columns of that matrix are the indices
of instruction classes. The cells of that matrix hold instruction emission probabilities with
types declared by the enumeration qsmm_prob_e. See Section 4.4.2 [Dumping the Action
Emission Matrix], page 165.

3. A node probability profile written to the state transition matrix and action emission matrix
by the function qsmm_node_asm or qsmm_node_profile_clone or copied from the state
transition matrix and action emission matrix of another node in deferred mode by the
function qsmm_set_node_profile_source. The probability profile occupies the number of
states less than or equal to the number of node states specified using the functions qsmm_
set_nstate_max and qsmm_set_node_nstate.

By default, the node has an unset probability profile. The unset probability profile is an
implicit uniform probability profile occupying all node states. In this uniform probability
profile, the probabilities of transitions between all node states are equal, and the probabili-
ties of emitting all instructions in all node states are equal. The implicit uniform probability
profile does not exist for a model:

– that restricts the action emission matrix of every node to define deterministic choice
of an assembler instruction emitted in every node state (field is_determ_opt of qsmm_
desc_s structure is non-zero), and the number of instruction classes in the instruction
class set is not 1. In this case, the node requires specifying a probability profile explic-
itly;

– with positive highest identifier of reserved node (see the function qsmm_node_reserve),
a large actor representing the environment state identification engine (field is_large_

env of qsmm_desc_s structure is non-zero) or the instruction emitting engine (field
is_large_opt of qsmm_desc_s is non-zero), and positive length of look-ahead signal
segment (field ngram_env_la_sz of qsmm_desc_s is positive). In this case, the function
qsmm_node_call_default cannot transfer control to the node, and all model nodes are
unusable. This limitation can disappear in future QSMM versions.

4. An indication that the node is the source of a probability profile for other nodes or is a user
of a probability profile provided by another node. The function qsmm_set_node_profile_

source sets this mode. In this mode, some operations on the node result in reporting QSMM_
ERR_PROFSRCP or QSMM_ERR_PROFSRCU respectively. See Section 5.11 [Memory Efficient
Cloning the Probability Profile], page 226.

5. The initial values of controlled probability variables. If the function qsmm_node_asm loads
an assembler program into the node, the assembler program specifies those initial values.
If the function qsmm_node_profile_clone or qsmm_set_node_profile_source specifies a
probability profile for the node, a source node provides those initial values.

6. Rules for recomputing profile probabilities in cells of the state transition matrix and action
emission matrix on changing the values of controlled probability variables. Every element
of the list of controlled probability variables additionally contains an indication whether
the value of a controlled probability variable set by the function qsmm_set_node_var_prob

needs committing to the state transition matrix or action emission matrix by the function
qsmm_node_var_realize according to those rules. See Section 5.9.2 [Controlled Variables],
page 210.

7. Optional names of node states corresponding to their indices. If the function qsmm_node_

asm loads an assembler program into the node, the assembler program specifies those names.
If the function qsmm_node_profile_clone or qsmm_set_node_profile_source specifies a
probability profile for the node, a source node provides those names. The function qsmm_

Chapter 4: Multinode Model 139

get_node_state_name retrieves the name of a node state by its index. The function qsmm_

get_node_state_by_name retrieves the index of a node state by its name.

8. An assembler program template for disassembling the node by the function qsmm_node_

disasm. If the function qsmm_node_asm loads an assembler program with the flag QSMM_

ASM_TEMPLATE, the assembler program becomes the template. If the function qsmm_node_

profile_clone or qsmm_set_node_profile_source specifies a probability profile for the
node, a source node provides the template.

9. Rules for calculating the values of output probability variables and arrays. If the function
qsmm_node_asm loads an assembler program into the node, the assembler program defines
the output probability variables and arrays. If the function qsmm_node_profile_clone or
qsmm_set_node_profile_source specifies a probability profile for the node, a source node
defines the output probability variables and arrays. See Section 5.9.3 [Output Variables],
page 213.

10. The cache of calculated probabilities of output probability variables and the cache of cal-
culated probabilities of choice alternatives. The function qsmm_get_node_var_prob_out

caches the calculated value of an output probability variable. Additionally, that function
and the function qsmm_get_node_array_prob_out cache the probabilities of all choice al-
ternatives that include a choice alternative for a calculated output probability variable or
array element. The function qsmm_node_var_out_forget called explicitly or implicitly in
certain cases clears both caches.

11. The number of times the function qsmm_node_call_default called the node and the num-
ber of times that function transferred control to the node but not yet returned control from
it. The functions qsmm_get_node_fq and qsmm_get_node_recurs retrieve those numbers.
The initial values are 0. See Section 4.3.2.1 [Calling a Node], page 149.

The node parameters tied to the model instance and listed above take the same initial values
in case of creating the model instance after creating the node and in case of creating the node
after creating the model instance.

The function qsmm_node_unload (see Section 5.12 [Unloading the Probability Profile],
page 229) called for a node causes unsetting all node parameters tied to the model instance
except for the parameters retrieved by the functions qsmm_get_node_fq and qsmm_get_node_

recurs. The unset parameters take their initial values they have just after creating the model
instance.

4.2.5 Creating Nodes

Use the following function to create a node belonging to a particular node class represented by
an instruction class set.

[Function]int qsmm_node_create_v2 (qsmm t model, const char
*node_class_name, int rez1, qsmm sig t *node_p)

This function creates a node of a multinode model. The node belongs to a node class repre-
sented by an instruction class set named node class name.

If node p is NULL, or *node p is QSMM_SIG_INVALID, the function finds the lowest unused
node identifier for the new node; if node p is not NULL, the function returns that identifier
in *node p. If node p is not NULL, and *node p is not QSMM_SIG_INVALID, *node p specifies
an unused identifier of a node to create; in this case, *node p remains unchanged on function
completion. The argument rez1 is for future use and must be equal to 0.

The node takes the initial values of basic parameters listed in Section 4.2.4 [Node Parameters],
page 137. If the model instance exists, the node also takes the initial values of extended
parameters listed in that section.

Chapter 4: Multinode Model 140

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument node p is not NULL, and *node p is not equal to QSMM_SIG_

INVALID but is greater than QSMM_SIG_MAX.

QSMM_ERR_NOTFOUND

The instruction class set node class name does not exist.

QSMM_ERR_TYPE

An entity named node class name is not an instruction class set. The entity is
an instruction meta-class.

QSMM_ERR_EXIST

The argument node p is not NULL, *node p is not equal to QSMM_SIG_INVALID,
and a node with identifier *node p already exists.

QSMM_ERR_VIOLAP

The model instance exists, and the identifier of a created node would be greater
than the highest reserved node identifier (see the function qsmm_node_reserve).

QSMM_ERR_UNTIMELY

The identifier of a created node would exceed QSMM_SIG_MAX.

QSMM_ERR_NOMEM

There was not enough memory to create a node.

Use the following macro to create a node from within the event handler function of an
instruction class set where the name of that event handler function is the name of this instruction
class set.

[Macro]QSMM_NODE_CREATE (node)
This macro expands to:

do { \

qsmm_sig_t sig_node=(node); \

qsmm_node_create_v2((qsmm),__FUNCTION__,0,&sig_node); \

} \

while (0)

The macro is for creating a model node with identifier node from within the event handler
function of an instruction class set representing the node class of this node. The name
of that event handler function must be equal to the name of this instruction class set. The
variable qsmm holding the handle of a multinode model must be accessible in the event handler
function. Normally, that variable is an event handler function argument.

The function qsmm_destroy destroys a multinode model and all its nodes. The following
function destroys a specific node.

[Function]int qsmm_node_destroy (qsmm t model, qsmm sig t node)
This function destroys a node with identifier node contained in a multinode model. The
identifier becomes the unused one. The function destroys all parameters of this node listed
in Section 4.2.4 [Node Parameters], page 137.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

Chapter 4: Multinode Model 141

QSMM_ERR_PROFSRCP

A node with identifier node is the source of a probability profile for other nodes.
See Section 5.11 [Memory Efficient Cloning the Probability Profile], page 226, for
more information on this mode.

QSMM_ERR_STORAGE

A failure of statistics storage of a large actor representing the environment state
identification engine. This error can leave the node in inconsistent state. If
after removing a reason of this error a repeated call to this function succeeds, it
completely destroys the node.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected for a large
actor representing the environment state identification engine. This error can
leave the node in inconsistent state. If after removing a reason of this error a
repeated call to this function succeeds, it completely destroys the node.

QSMM_ERR_ILSEQ

For a large actor representing the environment state identification engine, a statis-
tics storage access function generated an error message but cannot convert it to
a wide string according to a current locale, or a storage redirection function re-
ported QSMM_ERR_ILSEQ. This error can leave the node in inconsistent state. If
after removing a reason of this error a repeated call to this function succeeds, it
completely destroys the node.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation. This error can leave
the node in inconsistent state. If after removing a reason of this error a repeated
call to this function succeeds, it completely destroys the node.

Use the function described below to get the name of node class of a node. You can also use
this function to test whether a node with a particular identifier exists.

[Function]const char * qsmm_get_node_class_name (qsmm t model, qsmm sig t
node)

This function returns the name of instruction class set of a node with identifier node contained
in a multinode model. If the node does not exist, the function returns NULL.

At present, QSMM has the following limitation: after creating the model instance, the func-
tion qsmm_node_create_v2 and macro QSMM_NODE_CREATE cannot create nodes with identifiers
greater than the highest reserved node identifier known before creating the model instance.
That highest reserved identifier is a maximum number among the highest identifier of a node
created by qsmm_node_create_v2 or QSMM_NODE_CREATE (before creating the model instance)
and the highest identifier reserved by the function described below. The default highest reserved
identifier is 0.

Currently, the highest reserved node identifier also defines whether tuples encoding the action
choice states of the environment state identification engine and instruction emitting engine
contain a node identifier: if the highest reserved identifier is positive, the tuples contain the node
identifier, otherwise they do not contain the node identifier. If the highest reserved identifier is
0, the function qsmm_node_call_default never generates an assembler program to set a default
uniform probability profile.

[Function]int qsmm_node_reserve (qsmm t model, int node)
This function ensures that after creating the instance of a multinodemodel the function qsmm_

node_create_v2 and macro QSMM_NODE_CREATE are able to create nodes with identifiers up

Chapter 4: Multinode Model 142

to node inclusively. The highest reserved node identifier is currently a parameter for creating
the environment state identification engine and instruction emitting engine. If the model
instance already exists, the function qsmm_node_reserve only checks that node does not
exceed a known highest reserved identifier.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument node is negative or greater than QSMM_SIG_MAX.

QSMM_ERR_UNTIMELY

The model instance already exists, and node is greater than the current highest
reserved identifier.

Use the following function to get the number of existing nodes in a model.

[Function]qsmm_sig_t qsmm_get_nnode (qsmm t model)
This function returns the number of nodes in a multinode model.

A newly created node has the number of states equal to the maximum allowed number of
node states specified for the instruction class set of this node. See Section 4.2.3.5 [Setting
the Number of States], page 133, for the descriptions of qsmm_get_nstate_max and qsmm_set_

nstate_max functions for retrieving and setting that maximum allowed number of states. If a
small actor represents the environment state identification engine, or the highest reserved node
identifier is positive, you can change the number of node states to a lesser value by the function
qsmm_set_node_nstate. If a large actor represents the environment state identification engine
or instruction emitting engine, the highest reserved node identifier is positive, and the func-
tion qsmm_node_call_default already called the node, that function loaded a default uniform
probability profile into the node, so qsmm_set_node_nstate cannot change the number of node
states to a lesser value.

Use the following functions to retrieve or set the number of node states.

[Function]int qsmm_get_node_nstate_v2 (qsmm t model, int rez1, unsigned int
flags, qsmm sig t node, qsmm sig t *nstate_p)

This function retrieves the number of states of a node with identifier node contained in a
multinode model.

The argument rez1 is for future use and must be equal to 0.

On success, the function returns a non-negative value and sets *nstate p if nstate p is not
NULL. If the node exists, the function sets *nstate p to the number of node states. If the
node does not exist, and flags do not contain bitmask QSMM_EXCEPT_NOTFOUND, the function
sets *nstate p to QSMM_SIG_INVALID.

If the node does not exist, and flags contain QSMM_EXCEPT_NOTFOUND, the function returns
negative error code QSMM_ERR_NOTFOUND.

[Function]int qsmm_set_node_nstate (qsmm t model, qsmm sig t node,
qsmm sig t nstate)

This function sets to nstate the number of states of a node with identifier node contained in
a multinode model.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument nstate is less than 2 or greater than the maximum allowed number
of states specified for the instruction class set of this node.

Chapter 4: Multinode Model 143

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_NOSTATE

The node has a probability profile loaded, and nstate is less than the number of
states occupied by the probability profile.

QSMM_ERR_PROFSRCU

The node is a user of a probability profile provided by another node. See
Section 5.11 [Memory Efficient Cloning the Probability Profile], page 226, for
more information on this mode.

QSMM_ERR_NOTSUP

A large actor represents the environment state identification engine, and the
highest reserved node identifier is 0. Use the function qsmm_set_nstate_max to
set the number of states of this node before creating it.

4.2.6 Creating the Model Instance

A multinode model can have an instance holding the parameters of this model specific to its
single run against input data or its single course of interaction with external entities. That is,
a model represents the structure of a system, and the model instance is this system created to
carry out a particular process of interaction or computation—a process of model execution. After
finishing the process of model execution, a program can accumulate learned model parameters
and recreate the model instance for a new process of model execution. Multiple model runs
would provide the average values of learned model parameters.

Creating the model instance includes creating the environment state identification engine
and instruction emitting engine. The function qsmm_engine_create creates both engines with
parameters complying with every registered instruction class set and every created node. The
function qsmm_destroy implicitly destroys the model instance if it exists.

When the model instance exists, nodes have extended parameters listed in Section 4.2.4 [Node
Parameters], page 137. A node takes the initial values of those extended parameters on creating
the model instance after creating the node and on creating the node after creating the model
instance. All nodes lose their extended parameters on destroying the model instance.

When the model instance exists, attempts to register instruction meta-classes, instruction
classes, and instruction class sets and create nodes with identifiers greater than the highest re-
served node identifier result in reporting QSMM_ERR_UNTIMELY. You can reserve the highest node
identifier before creating the model instance—explicitly by the function qsmm_node_reserve

or implicitly by creating a node with that identifier by the function qsmm_node_create_v2 or
macro QSMM_NODE_CREATE.

Use the following function to create the model instance.

[Function]int qsmm_engine_create (qsmm t model)
This function creates the instance of a multinode model. A model instance holds parameters
specific to a particular process of interaction or computation performed using a model with
certain structure. If the model instance already exists, the function first destroys it.

The function returns a non-negative value on success or a negative error code on failure in
creating a model instance. Currently, the function can return the following error codes.

QSMM_ERR_BIGMDL

The multinode model has too many variants of content of look-ahead signal
segment or contains too many nodes or an instruction class set with a too large
maximum allowed number of states or an instruction class set with too many
instruction classes or outcomes of those instruction classes.

Chapter 4: Multinode Model 144

QSMM_ERR_NOIC

The multinode model contains an instruction class set without instruction classes.

QSMM_ERR_NOMEM

There was not enough memory to create the model instance.

Use the following function to destroy the model instance.

[Function]void qsmm_engine_destroy (qsmm t model)
This function destroys the instance of a multinode model. Destroying that instance includes
destroying the environment state identification engine and instruction emitting engine and
removing all statistics they might have collected. If the model instance does not exist, the
function has no effect. The destruction of model instance removes restrictions on changing
model structure imposed when creating the instance.

In the current implementation, an object called actor pair referred to by an actor pair handle
is a container of the environment state identification engine and instruction emitting engine in
the scope of model instance.

[Data type]qsmm_actpair_t
This is a type for an actor pair handle. It is a pointer, so variables of this type can be NULL.
The function qsmm_get_actpair returns the handle of an actor pair corresponding to the
model instance. That handle is valid until destroying the model instance.

Use the following function to get an actor pair associated with the model instance.

[Function]qsmm_actpair_t qsmm_get_actpair (qsmm t model)
This function returns the handle of an actor pair associated with the instance of a multinode
model. That handle is valid until destroying the model instance. If the model instance does
not exist, the function returns NULL.

Use the functions described below to get the actors comprising an actor pair and representing
the environment state identification engine and instruction emitting engine.

[Function]qsmm_actor_t qsmm_get_actpair_actor_env (qsmm actpair t
actpair)

This function returns the handle of an actor representing the environment state identification
engine in an actor pair actpair. This function never returns NULL.

[Function]qsmm_actor_t qsmm_get_actpair_actor_opt (qsmm actpair t
actpair)

This function returns the handle of an actor representing the instruction emitting engine in
an actor pair actpair. This function never returns NULL.

To be confident that all key parameters of the environment state identification engine and
instruction emitting engine have expected values, explicitly set those parameters after creating
the model instance. If the variable qsmm holds the handle of a multinode model, use the fol-
lowing lines of code to assign to the variable actor_env the handle of the environment state
identification engine and assign to the variable actor_iee the handle of the instruction emitting
engine:

const qsmm_actpair_t actpair=qsmm_get_actpair(qsmm);

const qsmm_actor_t actor_env=qsmm_get_actpair_actor_env(actpair),

actor_iee=qsmm_get_actpair_actor_opt(actpair);

Chapter 4: Multinode Model 145

Some parameters are applicable to a small actor associated with a large actor representing
the environment state identification engine. Use the following lines of code to assign the handle
of this small actor to the variable actor_env_env:

const qsmm_actor_t actor_env_env=

qsmm_get_actpair_actor_env(

qsmm_get_actpair(qsmm_get_actor_large_model(actor_env)));

Some parameters are applicable to a small actor associated with a large actor representing
the instruction emitting engine. Use the following lines of code to assign the handle of this small
actor to the variable actor_iee_env:

const qsmm_actor_t actor_iee_env=

qsmm_get_actpair_actor_env(

qsmm_get_actpair(qsmm_get_actor_large_model(actor_iee)));

Consult with Section 3.8 [Example of Using the Storage API], page 96, for a list of parameters
you can set for an actor. The table below summarizes parameters you can set for the afore-
mentioned variables actor_env, actor_iee, actor_env_env, and actor_iee_env—an existing
environment state identification engine and instruction emitting engine and their associated
small actors if they exist. The table indicates initial parameter values for those actors. Consider
explicit setting the initial value of a parameter if a corresponding cell contains “varies”.

Parameter and API function for setting it actor env actor iee actor
env env

actor
iee env

The mode of behavior: adaptive or random
qsmm_set_actor_random

adaptive adaptive

The index of a spur type for the automatic spur
qsmm_set_actor_auto_spur_type

0 −1 varies −1

Discrete time
qsmm_set_actor_discrete_time

0 0 0 0

Continuous time
qsmm_actor_time_delta

0 0 0 0

Temperature
qsmm_set_actor_ktemperature

1 1

Spur values
qsmm_actor_spur_delta

0 0

Spur weights
qsmm_set_actor_spur_weight

varies 1

The way of spur perception: normal or inverse
qsmm_set_actor_spur_perception

normal normal

The type of time for computing spur increment
velocity: discrete or continuous
qsmm_set_actor_spur_time – small actor only

varies conti-
nuous

varies conti-
nuous

Chapter 4: Multinode Model 146

The type of a function returning the relative prob-
ability of an output signal and, for certain those
types, a helper function for computing the rela-
tive probability of an output signal
qsmm_set_actor_relprob_type and
qsmm_set_actor_relprob_helper

varies varies

A function for intercepting the updates of cycle
type statistics
qsmm_set_storage_cycle_update_hook for a
handle obtained by qsmm_get_actor_storage

NULL NULL NULL NULL

4.2.7 Associating Parameters with a Model

When creating a multinode model, you can declare the custom parameters of this model as
global variables and access them from event handler functions. However, when you create
multiple models existing concurrently and sharing the same event handler functions, you may
need to associate a number of variables with a particular model.

You can associate a number of pointers with a multinode model. They can address statically
or dynamically allocated memory blocks. Every pointer has a unique index. In the simplest case,
you can associate a single pointer with index 0 addressing an instance of a structure holding
variables specific to a model.

Use the following functions to get a pointer associated with a multinode model or associate
a pointer with the model.

[Function]void * qsmm_get_ptr (qsmm t model, int ptr_idx)
This function returns a pointer with index ptr idx associated with a multinode model. If the
model does not have a pointer with this index, or the pointer is NULL, the function returns
NULL.

[Function]int qsmm_set_ptr (qsmm t model, int ptr_idx, void *ptr_p)
This function associates a pointer ptr p with a multinode model. You can fetch this pointer
later by index ptr idx. If a pointer with this index already exists, the function overwrites it.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument ptr idx is negative.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

It is possible to associate pointers not only with the entire multinode model but also with its
particular nodes. Use the following functions to get a pointer associated with a node or associate
a pointer with the node.

[Function]void * qsmm_get_node_ptr (qsmm t model, qsmm sig t node, int
ptr_idx)

This function returns a pointer with index ptr idx associated with a node of a multinode
model. The argument node specifies the identifier of this node. If the node does not exist, or
the node does not have a pointer with this index, or the pointer is NULL, the function returns
NULL.

Chapter 4: Multinode Model 147

[Function]int qsmm_set_node_ptr (qsmm t model, qsmm sig t node, int ptr_idx,
void *ptr_p)

This function associates a pointer ptr p with a node of a multinode model. The argument
node specifies the identifier of this node. You can fetch the pointer later by index ptr idx. If
a pointer with this index already exists, the function overwrites it.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument ptr idx is negative.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

4.3 Executing a Multinode Model

Executing a multinode model is executing its nodes in a model instance scope. The function
qsmm_node_call_default starts executing a node. An executed node can call other nodes or
finish its own execution causing that function to return control. Executed nodes use a call
stack similar to a function call stack. The frames of this stack can contain application-specific
information usable in event handler functions.

The execution of a node consists of a series of assembler instruction invocations for the chang-
ing current state of this node. The event handler of an instruction meta-class processes the
invocations of assembler instructions belonging to instruction classes derived from this instruc-
tion meta-class. An invoked instruction returns an outcome the environment state identification
engine uses to select the next node state.

As a side effect of processing an instruction invocation, the event handler of an instruction
meta-class can increment continuous time, change spur tracked by the environment state iden-
tification engine or instruction emitting engine, or modify look-ahead signals taking part in the
selection of next node state. If the multinode model operates correctly, the state models of
executed nodes are adapting to provide higher spur increment velocity.

To evaluate whether a model provides adaptive behavior, a developer can compare the ef-
ficiency of this model in adaptive mode of operation with the efficiency in random mode of
operation.

4.3.1 Incrementing Time and Spur

Use the following function to convey to the instance of a multinode model information about
passing a continuous time period.

[Function]int qsmm_time_delta (qsmm t model, double time_delta)
This function increments by time delta continuous time tracked by the environment state
identification engine and instruction emitting engine of a multinode model.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument time delta is not finite, or incremented continuous time tracked
by an engine would be negative.

QSMM_ERR_INFIN

Incremented continuous time tracked by an engine would be positive infinity.

Chapter 4: Multinode Model 148

QSMM_ERR_UNTIMELY

The model instance does not exist.

If the environment state identification engine is a small actor, spur types supported by a
multinode model have zero-based indices. By default, spur type 0 is the automatic spur, and
only the environment state identification engine (not the instruction emitting engine) uses it.
Ordinarily, you do not increment the automatic spur directly.

If the environment state identification engine is a large actor, the model supports special spur
type −1 for the automatic spur of a small actor associated with the large actor. Ordinarily, you
do not increment that automatic spur directly.

Spur type i of a multinode model corresponds to spur type i of the environment state
identification engine. The instruction emitting engine has the number of supported spur types
equal to the number of spur types specified when creating the model minus 1. If i>0, spur type
i of the model corresponds to spur type i−1 of the instruction emitting engine.

Use the following function to increment spur with a specific type for a model instance.

[Function]int qsmm_spur_delta (qsmm t model, int spur_type, double
spur_delta)

This function increments by spur delta spur with type spur type associated with a multinode
model. The argument spur delta can be negative.

If spur type is 0 or −1, the function only increments spur with type spur type tracked by the
environment state identification engine. If spur type is equal to i>0, the function increments
spur with type i tracked by the environment state identification engine and spur with type
i−1 tracked by the instruction emitting engine.

Spur type 0 is for the automatic spur of the environment state identification engine. If it is
a large actor (specified by the field is_large_env of qsmm_desc_s structure when creating
the model), spur type −1 corresponds to the automatic spur of a small actor associated with
the large actor. The function qsmm_get_nspur returns the number of spur types supported
by a multinode model excluding that special spur type −1.
The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

One of the following conditions is true:

– the environment state identification engine is the small actor, and spur type
is negative;

– the environment state identification engine is the large actor, and spur type
is less than −1;

– spur type is greater than or equal to the number of spur types specified
in the field nspur of qsmm_desc_s structure when creating the multinode
model;

– spur delta is not finite.

QSMM_ERR_INFIN

Incremented spur tracked by an engine would be infinite.

QSMM_ERR_UNTIMELY

The model instance does not exist.

Use the function qsmm_actor_time_delta to increment continuous time tracked by either the
environment state identification engine or instruction emitting engine. Use the function qsmm_

actor_spur_delta to increment spur with a specific type tracked by either the environment
state identification engine or instruction emitting engine. You can obtain the handles of those
engines by the functions qsmm_get_actpair_actor_env and qsmm_get_actpair_actor_opt.

Chapter 4: Multinode Model 149

4.3.2 Transferring Control between Nodes

The function qsmm_node_call_default transfers control to a node. That function exits when
node execution finishes. The event handler of an instruction meta-class can call that function to
transfer control to another node in a nested manner while processing an instruction invocation.

To finish the execution of a node, call the function qsmm_return_to_caller_node while
handling an instruction invocation for the node.

To terminate the execution of a model, for example, after processing all input data, call
the macro QSMM_TERMINATE or the function qsmm_set_continue with flag equal to 0 while
processing an instruction invocation. They cause finishing the execution of all nodes in the node
call stack. The event handlers of instruction meta-classes may need to analyze a flag returned
by the function qsmm_get_continue after a call to qsmm_node_call_default to perform exit
from the event handler as soon as possible on terminating model execution.

4.3.2.1 Calling a Node

Use the following function to call a node.

[Function]int qsmm_node_call_default (qsmm t model, qsmm sig t node, void
*paramp)

This function transfers control to a node with identifier node in a multinode model, executes
the node, and exits when node execution finishes. A just called node resets its current state to
initial one. When processing instruction invocations for executed nodes, the event handlers
of instruction meta-classes can call this function recursively, including multiple times for the
same node.

Transferring control to the node begins with sending an event QSMM_EVT_NODE_ENTER to the
event handler of instruction class set of that node with passing the parameter paramp to that
event handler. If the node does not have a probability profile specified, the environment state
identification engine or instruction emitting engine is a large actor, and the highest reserved
node identifier is positive, the function loads a default uniform probability profile into the
node. While executing the node, the function sends events QSMM_EVT_ACTIVATE to the event
handlers of instruction meta-classes to process the invocations of emitted instructions. On
finishing node execution, before returning control to a caller, the function sends an event
QSMM_EVT_NODE_LEAVE to the instruction class set with passing the parameter paramp to the
event handler.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_STACKOVR

The number of frames in the node call stack would exceed a value specified in
the field stack_sz_max of qsmm_desc_s structure when creating the multinode
model. The function qsmm_get_stack_sz_max returns this value.

QSMM_ERR_OUTCOME

While processing an instruction invocation, the event handler of an instruction
meta-class set an invalid instruction outcome or did not set an instruction out-
come when it was necessary to do so. This error leaves the multinode model in
inconsistent state.

Chapter 4: Multinode Model 150

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal
assigned to the environment state identification engine or instruction emitting
engine reported an error by returning NaN. The function qsmm_actor_calc_

action_prob calls the helper function. This error leaves the multinode model in
inconsistent state.

QSMM_ERR_INFIN

The function qsmm_actor_reg_sig_in or qsmm_get_actor_sig_action called
for the environment state identification engine or instruction emitting engine
reported QSMM_ERR_INFIN. This error leaves the multinode model in inconsistent
state.

QSMM_ERR_MPROF

No room in the pool of probabilities lists in normal form for a large actor repre-
senting the environment state identification engine or instruction emitting en-
gine when loading a default uniform probability profile into the node. The
fields profile_pool_env_sz and profile_pool_opt_sz of qsmm_desc_s struc-
ture specify the pool sizes when creating the multinode model.

QSMM_ERR_NOPROF

The function cannot generate a uniform probability profile for the node, because
the action emission matrices of all nodes have the restriction to define only deter-
ministic action choices (field is_determ_opt of qsmm_desc_s structure specifies
this mode), but the instruction class set of that node contains multiple instruction
classes. It is necessary to load a probability profile into the node explicitly.

QSMM_ERR_UNSUPPLA

The function cannot load a default uniform probability profile into the node,
because the multinode model has positive length of look-ahead signal segment.
The field ngram_env_la_sz of qsmm_desc_s structure specifies this length when
creating the multinode model.

QSMM_ERR_STORAGE

A Storage API function reported storage failure. This error can leave the multin-
ode model in inconsistent state.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected. This error
can leave the multinode model in inconsistent state.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale. This error can leave the multinode model in inconsistent state.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation. This error can leave
the multinode model in inconsistent state.

Use the following function to get the number of calls of a node since creating the model
instance.

[Function]int qsmm_get_node_fq (qsmm t model, qsmm sig t node, long *fq_p)
This function retrieves the number of calls to a node with identifier node in a multinode
model by the function qsmm_node_call_default since creating the model instance. If the
model instance does not exist, the retrieved number of calls is 0. If fq p is not NULL, the
function sets *fq p to the retrieved number of calls.

Chapter 4: Multinode Model 151

On success, the function returns a non-negative value. If the node does not exist, the function
returns negative error code QSMM_ERR_NOTFOUND.

Use the function described below to get the number of nested calls to a node. You can use
this function to prevent recursive calling a node if the model does not support recursive node
calls.

[Function]int qsmm_get_node_recurs (qsmm t model, qsmm sig t node)
On success, this function returns a non-negative number of nested calls to a node with
identifier node in a multinode model by the function qsmm_node_call_default. If the node
does not exist, the function qsmm_get_node_recurs returns negative error code QSMM_ERR_

NOTFOUND.

4.3.2.2 Returning Control from a Node

Use the following function in an event handler to return from last nested call to qsmm_node_

call_default.

[Function]void qsmm_return_to_caller_node (qsmm t model)
This function sets the flag associated with a multinode model causing the function qsmm_

node_call_default to exit. The latter function resets that flag before sending an event
QSMM_EVT_NODE_ENTER to the instruction class set and before sending an event QSMM_EVT_

ACTIVATE to an instruction meta-class and checks the flag after processing these events.
In case of calling the function qsmm_return_to_caller_node while processing the event
QSMM_EVT_ACTIVATE by the instruction meta-class, qsmm_node_call_default ignores a set
instruction outcome.

4.3.2.3 Terminating Model Execution

Model execution terminates after processing all input data or performing a course of interaction
with external entities—all nodes return control, and the node call stack becomes empty.

The model instance has a flag indicating whether or not to continue model execution: a
non-zero flag indicates to continue model execution, and zero flag indicates to terminate model
execution with reporting success. The function qsmm_engine_create initializes the flag to a
non-zero value when creating the model instance.

Use the following functions to query or set the flag.

[Function]int qsmm_get_continue (qsmm t model)
This function returns the flag specifying whether or not to continue the execution of a multin-
ode model. If the function returns a positive value, model execution continues. If the function
returns zero, model execution terminates. If the model instance does not exist, the function
returns negative error code QSMM_ERR_UNTIMELY.

[Function]int qsmm_set_continue (qsmm t model, int flag)
This function sets the flag specifying whether or not to continue the execution of a multinode
model. If flag is non-zero, model execution continues. If flag is zero, model execution
terminates.

On success, the function returns a non-negative value. If the model instance does not exist,
the function returns negative error code QSMM_ERR_UNTIMELY.

Zero flag causes returning from all nested calls to the function qsmm_node_call_default as
if after calling the function qsmm_return_to_caller_node in the event handlers of instruction
meta-classes on processing an event QSMM_EVT_ACTIVATE for all nodes in the node call stack.
The function qsmm_node_call_default checks the flag at the beginning of its execution, and, if
the flag is zero, the function exits immediately. That function also checks the flag (and possibly

Chapter 4: Multinode Model 152

exits) after sending an event QSMM_EVT_NODE_ENTER to the instruction class set and after sending
an event QSMM_EVT_ACTIVATE to an instruction meta-class. The event handler of an instruction
meta-class can analyze the flag explicitly by calling the function qsmm_get_continue after a
call to qsmm_node_call_default while processing an event QSMM_EVT_ACTIVATE to perform
immediate exit from the event handler in case of terminating model execution.

Use the following macro to set the flag to zero.

[Macro]QSMM_TERMINATE ()
This macro expands to:

qsmm_set_continue((qsmm), 0)

You can use this macro to terminate the execution of a multinode model from within an
event handler, where its argument qsmm is equal to the handle of this multinode model.

For example, you can call this macro in a block of code handling the invocation of an in-
struction (in the event handler of an instruction meta-class on processing an event QSMM_EVT_
ACTIVATE) to terminate the execution of a multinode model when the instruction fetches all
input data of this multinode model.

4.3.3 Handling Instruction Invocation

During the execution of a multinode model, its nodes execute instructions. When a node has to
invoke an instruction, the node triggers an event QSMM_EVT_ACTIVATE of the instruction meta-
class of this instruction.

On triggering the event QSMM_EVT_ACTIVATE, the function qsmm_node_call_default passes
the identifier of that node to the event handler of that instruction meta-class via the argument
qsmm_node. The event handler can fetch the binary parameters of the instruction class of this
instruction by calling the function qsmm_get_eh_instr_param. The function qsmm_get_eh_

instr_class_set_name retrieves the name of an instruction class set containing the instruction
class. To fetch from the current frame of node call stack (see Section 4.3.6 [Working with
the Node Call Stack], page 158) index idx that uniquely identifies the instruction class in the
instruction class set, use this call:

qsmm_get_stack_instr_class(qsmm,0,&idx);

While processing an event QSMM_EVT_ACTIVATE, the event handler of an instruction meta-
class can make changes to an environment or:

1. Set an instruction outcome by the function qsmm_set_instr_outcome. This operation is
mandatory in certain cases.

2. Increment the current values of time and spur by the functions qsmm_time_delta and
qsmm_spur_delta. See Section 4.3.1 [Incrementing Time and Spur], page 147.

3. Call nodes by the function qsmm_node_call_default. See Section 4.3.2.1 [Calling a Node],
page 149.

4. Return control to a caller node by the function qsmm_return_to_caller_node. See
Section 4.3.2.2 [Returning Control from a Node], page 151.

5. Terminate model execution by the function qsmm_set_continue or macro QSMM_TERMINATE.
See Section 4.3.2.3 [Terminating Model Execution], page 151.

6. Access user frames in the node call stack obtained by the function qsmm_get_stack_frame.
See Section 4.3.6 [Working with the Node Call Stack], page 158.

7. Change look-ahead signals by the function qsmm_set_la_sig. See Section 4.3.4 [Setting
Look-ahead Signals], page 154.

8. Change the weights of instruction classes by the functions qsmm_set_instr_class_weight,
qsmm_set_instr_class_weight_by_name_f, and qsmm_set_instr_meta_class_weight.
See Section 4.3.5 [Setting Instruction Classes Weights], page 155.

Chapter 4: Multinode Model 153

An instruction outcome affects the selection of next node state after an instruction invocation.
Use the following functions to query or set an instruction outcome.

[Function]void qsmm_get_instr_outcome (qsmm t model, int *outcome_p)
This function retrieves an instruction outcome associated with a multinode model. If out-
come p is not NULL, the function sets *outcome p to a retrieved outcome.

An instruction outcome associated with a multinode model is last instruction outcome set
by the function qsmm_set_instr_outcome while processing an instruction invocation event.
If there was no call to qsmm_set_instr_outcome, and the instruction class has a positive
number of outcomes, instruction outcome returned is −1. If there was no call to qsmm_set_

instr_outcome, and the instruction class has zero number of outcomes, instruction outcome
returned is the outcome of previous instruction invoked by the node after transferring control
to it or 0 if there was no such instruction.

[Function]int qsmm_set_instr_outcome (qsmm t model, int outcome)
This function sets to outcome the instruction outcome associated with a multinode model.
The function performs only a preliminary check on the validity of that outcome. The function
qsmm_node_call_default performs final checks after a return from the event handler of a
corresponding instruction meta-class, and, if the outcome is invalid, that function reports
QSMM_ERR_OUTCOME.

On success, the function returns a non-negative value. If outcome is less than −1, the function
returns negative error code QSMM_ERR_INVAL.

The function qsmm_set_eh_noutcome specifies the number of instruction outcomes during
instruction class initialization. The default number of instruction outcomes used in case of
omitting a call to that function is equal to 1. The number of instruction outcomes equal to 0
has special meaning.

Before calling the event handler of an instruction meta-class to process an event QSMM_EVT_
ACTIVATE, the function qsmm_node_call_default sets the instruction outcome associated with
the multinode model to −1 if the instruction class has a positive number of outcomes. If the
instruction class has zero number of outcomes, qsmm_node_call_default sets the instruction
outcome associated with the multinode model to the outcome of previous instruction invoked
by the node after transferring control to it or to 0 if there was no such instruction.

After calling the event handler of an instruction meta-class to process an event QSMM_EVT_
ACTIVATE, if node execution continues, the instruction outcome associated with the multinode
model is equal to −1, and the number of outcomes of an instruction class is equal to 1, qsmm_
node_call_default uses outcome 0 to select the next node state. This behavior makes it
possible to omit calls to the function qsmm_set_instr_outcome for instruction classes with only
one possible instruction outcome.

If after calling the event handler node execution continues, the instruction outcome asso-
ciated with the multinode model is equal to −1, and the number of outcomes of an invoked
instruction class is not equal to 1, qsmm_node_call_default reports QSMM_ERR_OUTCOME. This
check compels to set an instruction outcome by qsmm_set_instr_outcome if the number of
outcomes of an invoked instruction class is greater than 1.

If the instruction class has zero number of outcomes, the event handler of a corresponding
instruction meta-class can call the function qsmm_get_instr_outcome on processing an event
QSMM_EVT_ACTIVATE to analyze the outcome of previous instruction invoked by the node after
transferring control to it. The event handler can leave that outcome intact or change it to a non-
negative value less than the maximum number among the numbers of outcomes of instruction
classes in the instruction class set of that node.

The functions described below return the probability of last state transition for a currently
executed node and the probability of last instruction emission in a current node state. The

Chapter 4: Multinode Model 154

probabilities have the type QSMM_PROB_AGGR and are in cells of the state transition matrix and
action emission matrix of this node. You can call these functions while processing an event
QSMM_EVT_ACTIVATE by the event handler of an instruction meta-class, for example, to compute
the time when an instruction has to take effect.

[Function]double qsmm_get_prob_goto (qsmm t model)
This function returns the probability of last state transition performed just before last in-
struction invocation by a node of a multinode model. That probability has the type QSMM_

PROB_AGGR and is in a cell of state transition matrix of this node. If the nodes of this model
did not yet invoke instructions, the function returns 0. A returned value is always in the
range 0 to 1 inclusive.

[Function]double qsmm_get_prob_action (qsmm t model)
This function returns the probability of last instruction emission in the current state of a
node of a multinode model just after performing last state transition. That probability has
the type QSMM_PROB_AGGR and is in a cell of action emission matrix of this node. If the nodes
of this model did not yet invoke instructions, the function returns 0. A returned value is
always in the range 0 to 1 inclusive.

4.3.4 Setting Look-ahead Signals

Look-ahead signals are signals that along with an instruction class index and an instruction
outcome take part in selecting the next node state after an instruction invocation. The adjective
“look-ahead” indicates that in some situations those signals can convey look-ahead information.
For example, when processing a sequence of symbols from left to right, a multinode model can
analyze look-ahead symbols as look-ahead signals. In other situations, those signals can pass
even look-back information to the model.

When creating a multinode model by the function qsmm_create, the fields ngram_env_la_sz,
nsig_ngram_env_la, and range_sig_env_la_p of qsmm_desc_s structure specify the length of
the look-ahead signal segment of this model and the ranges of signals assignable to the elements
of that segment. You can retrieve those parameters later by the functions qsmm_get_ngram_env_
la_sz and qsmm_get_nsig_ngram_env_la called for this multinode model and by the function
qsmm_get_actor_range_sig called for the environment state identification engine.

An important limitation imposed on a multinode model when its look-ahead signal segment
has positive length is that the function qsmm_node_asm cannot load assembler programs into the
nodes of this model. This limitation also prevents loading default uniform probability profiles
into the nodes of this model using implicitly generated assembler programs when the highest
reserved node identifier is positive, and the environment state identification engine or instruction
emitting engine is a large actor—in this case, the model is unusable. Therefore, if you need to
use a look-ahead signal segment with positive length for a model with the environment state
identification engine or instruction emitting engine represented by a large actor, use the model
containing a single node with identifier 0.

Use the following functions to query or set signals in the look-ahead signal segment at specific
positions.

[Function]int qsmm_get_la_sig (qsmm t model, int pos, qsmm sig t *sigp)
If sigp is not NULL, this function sets *sigp to an element of look-ahead signal segment of a
multinode model at position pos.

On success, the function returns a non-negative value. If pos is negative or greater than or
equal to the length of look-ahead signal segment, the function returns negative error code
QSMM_ERR_INVAL.

Chapter 4: Multinode Model 155

[Function]int qsmm_set_la_sig (qsmm t model, int pos, qsmm sig t sig)
This function sets an element of look-ahead signal segment of a multinode model at position
pos to sig.

On success, the function returns a non-negative value. If pos is negative or greater than
or equal to the length of look-ahead signal segment, or sig does not belong to a range of
allowed signal identifiers at position pos in the look-ahead signal segment, the function returns
negative error code QSMM_ERR_INVAL.

You can call the functions qsmm_get_la_sig and qsmm_set_la_sig at any point after cre-
ating a multinode model. For example, you can call them while processing an event QSMM_EVT_
NODE_ENTER by the event handler of an instruction class set or an event QSMM_EVT_ACTIVATE by
the event handler of an instruction meta-class.

If the field range_sig_env_la_p of qsmm_desc_s structure is NULL, the function qsmm_create

initializes the elements of look-ahead signal segment to 0. If that field is not NULL, qsmm_

create initializes the elements of look-ahead signal segment to the values of first field in the
corresponding elements of range_sig_env_la_p array.

See the file tests/lookup2.c for an example program that uses the look-ahead signal seg-
ment.

4.3.5 Setting Instruction Classes Weights

If the field dont_use_instr_class_weights of qsmm_desc_s structure passed to the function
qsmm_create when creating a multinode model is zero, and the instruction emitting engine is
a small actor, you can assign weights to instruction classes executed1 by a node of this model.
The weights are multipliers for calculated probabilities of selection of those instruction classes by
the instruction emitting engine assigned to its output signals by the function qsmm_set_actor_

sig_weight. The function qsmm_node_create_v2 initializes to 1 the weights of all instruction
classes executable by a node.

Warning: changing the weights of instruction classes leads to ill-defined behavior of
built-in functions for computing the relative probability of an output signal by the
instruction emitting engine. Therefore, avoid changing the weights of instruction
classes if you use those built-in functions. See Section 2.6.5 [Number of Output
Signals], page 55, for the explanation why the behavior becomes ill-defined.

You can use the following functions to query or set the weight of an instruction class specified
by its index uniquely identifying the instruction class in an instruction class set.

[Function]int qsmm_get_instr_class_weight (qsmm t model, qsmm sig t node,
qsmm sig t instr_class, double *weight_p)

This function retrieves the weight of an instruction class executable by a node of a multinode
model. The argument node specifies the identifier of this node. The argument instr class
specifies the index of this instruction class in the instruction class set of this node. If weight p
is not NULL, the function sets *weight p to retrieved weight.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_INVAL

The argument instr class is greater than or equal to the number of instruction
classes in the instruction class set of the node.

1 Here and below, “the invocation/execution of an instruction class” means “the invocation/execution of an
instruction belonging to an instruction class.”

Chapter 4: Multinode Model 156

QSMM_ERR_NOTSUP

The multinode model does not support assigning weights to instruction classes.

[Function]int qsmm_set_instr_class_weight (qsmm t model, qsmm sig t node,
qsmm sig t instr_class, double weight)

This function sets to weight the weight of an instruction class executable by a node of a
multinode model. The argument node specifies the identifier of this node. The argument
instr class specifies the index of this instruction class in the instruction class set of this node.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_INVAL

The argument weight is negative or not finite, or instr class is greater than or
equal to the number of instruction classes in the instruction class set of the node.

QSMM_ERR_NOTSUP

The multinode model does not support assigning weights to instruction classes.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following functions to query or set the weight of an instruction class specified by
its name consisting of an instruction meta-class name and optional text parameters of this
instruction class.

[Function]int qsmm_get_instr_class_weight_by_name_f (qsmm t model,
qsmm sig t node, double *weight_p, const char *fmt, ...)

[Function]int qsmm_set_instr_class_weight_by_name_f (qsmm t model,
qsmm sig t node, double weight, const char *fmt, ...)

The function qsmm_get_instr_class_weight_by_name_f retrieves the weight of an instruc-
tion class executable by a node of a multinode model. If weight p is not NULL, the function
sets *weight p to retrieved weight. The function qsmm_set_instr_class_weight_by_name_

f sets to weight the weight of an instruction class executable by a node of a multinode model.

The argument model specifies a multinode model handle. The argument node specifies a
node identifier. The argument fmt and subsequent arguments interpreted as in the function
printf specify an instruction class name: a sequence of zero or more whitespace characters,
an instruction meta-class name optionally followed by a sequence of one or more whitespace
characters and the text parameters of this instruction class, and a sequence of zero or more
whitespace characters.

Before searching the instruction class in the instruction class set of this node, the functions
convert the formatted name to the canonical form: the instruction meta-class name optionally
followed by the space character and the text parameters of this instruction class converted to
their canonical form according to rules described in Section 4.2.2.6 [Setting Text Instruction
Parameters], page 119.

The functions return a non-negative value on success or a negative error code on failure.
Currently, the functions can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist, or the instruction class not found in
the instruction class set of this node.

Chapter 4: Multinode Model 157

QSMM_ERR_INVAL

The argument weight is negative or not finite, or an instruction class name has
invalid format.

QSMM_ERR_NOTSUP

The multinode model does not support assigning weights to instruction classes.

QSMM_ERR_ILSEQ

Unable to convert an instruction class name to a wide string according to a
current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

For example, to set the weight of ‘move north’ instruction class to 0 to disable moving an
agent in the north direction, use a line of code like this:

qsmm_set_instr_class_weight_by_name_f(qsmm,node,0,"move north");

Use the following function to set to the same value the weights of all instruction classes
derived from an instruction meta-class for a node.

[Function]int qsmm_set_instr_meta_class_weight (qsmm t model, const char
*instr_meta_class_name, qsmm sig t node, double weight)

This function sets the weights of all instruction classes derived from an instruction meta-class
instr meta class name and executable by a node of a multinode model to weight divided by
the number of those instruction classes. The argument node specifies the identifier of this
node.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction meta-class instr meta class name not found, or a node with
identifier node does not exist, or there are no instruction classes derived from
that instruction meta-class in the instruction class set of this node.

QSMM_ERR_INVAL

The argument weight is negative or not finite.

QSMM_ERR_TYPE

An entity named instr meta class name is not an instruction meta-class. The
entity is an instruction class set.

QSMM_ERR_NOTSUP

The multinode model does not support assigning weights to instruction classes.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The function qsmm_node_call_default sets the weights of output signals of instruction
emitting engine equal to the weights of instruction classes executable by a node on transferring
control to it—calling the node or returning control to it from another node. The aforementioned
functions for setting the weights of instruction classes immediately update the weights of cor-
responding output signals of instruction emitting engine if the model instance exists, the node
call stack is not empty, and the identifier of a currently executed node is equal to node.

Chapter 4: Multinode Model 158

4.3.6 Working with the Node Call Stack

The node call stack contains information about nodes that received control but have not yet
returned it. A node can occur in multiple stack frames if calls to the node are recursive. The
field stack_sz_max of qsmm_desc_s structure specifies a limit on the number of frames in the
stack. The function qsmm_get_stack_sz_max returns this limit. The following function returns
the current number of frames in the stack.

[Function]int qsmm_get_stack_sz (qsmm t model)
This function returns the current number of frames in the node call stack of a multinode
model. A returned value is always non-negative.

A system stack frame is the system part of a frame of node call stack. Each system stack
frame contains the following information:

• The identifier of a called node.

• The index of current state of a called node. For all stack frames except for last one,
the current state is a state where the event handler of an instruction meta-class called the
function qsmm_node_call_default on processing an instruction class invocation to transfer
control to a node described by the next stack frame.

• The index of an invoked instruction class. For all stack frames except for last one, processing
an instruction class invocation led to calling the function qsmm_node_call_default, and
that function transferred control to a node described by the next stack frame.

Use the following functions to fetch the aforementioned pieces of information from the system
part of a node call stack frame at specified depth.

[Function]int qsmm_get_stack_node (qsmm t model, int depth)
This function returns the non-negative identifier of a called node stored in the system part
of a frame of node call stack of a multinode model at depth. Depth 0 corresponds to the
current stack frame, depth 1 corresponds to the previous stack frame, and so on.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_UNTIMELY

The node call stack is empty.

QSMM_ERR_INVAL

The argument depth is negative or greater than or equal to the number of frames
in the node call stack returned by the function qsmm_get_stack_sz.

[Function]int qsmm_get_stack_state (qsmm t model, int depth)
This function returns the non-negative index of a node state stored in the system part of a
frame of node call stack of a multinode model at depth. The environment state identification
engine has identified this node state. If the state is yet unknown (this is the case if the event
handler of an instruction class set called this function on processing an event QSMM_EVT_

NODE_ENTER), the function returns 0. Depth 0 corresponds to the current stack frame, depth
1 corresponds to the previous stack frame, and so on.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_UNTIMELY

The node call stack is empty.

QSMM_ERR_INVAL

The argument depth is negative or greater than or equal to the number of frames
in the node call stack returned by the function qsmm_get_stack_sz.

Chapter 4: Multinode Model 159

[Function]int qsmm_get_stack_instr_class (qsmm t model, int depth, int
*idx_p)

This function retrieves the index of instruction class of last instruction invoked by a node of
a multinode model. The function fetches that index from the system part of a frame of node
call stack at depth. If idx p is not NULL, the function sets *idx p to a fetched index. If the
node did not yet invoke any instructions since creating the frame in the node call stack, the
fetched index is −1. Depth 0 corresponds to the current stack frame, depth 1 corresponds to
the previous stack frame, and so on.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_UNTIMELY

The node call stack is empty.

QSMM_ERR_INVAL

The argument depth is negative or greater than or equal to the number of frames
in the node call stack returned by the function qsmm_get_stack_sz.

See Section 4.2.3.4 [Registering Instruction Classes], page 127, for the means of obtaining
information about an instruction class specified by its index.

A user stack frame is the user part of a frame of node call stack. The user stack frame
contains application-specific information associated with a called node for handling instruction
invocations—the execution context of this node.

A user stack frame is typically an instance of a structure declared in an application program.
The purpose of functions described below is to query or set the size of this frame. You should set
the size of a user stack frame before creating the model instance by the function qsmm_engine_

create.

[Function]size_t qsmm_get_stack_frame_sz (qsmm t model)
This function returns the size (in bytes) of the user part of each frame in the node call stack
of a multinode model. If the model does not use that user part, the function returns 0.

[Function]int qsmm_set_stack_frame_sz (qsmm t model, size t sz)
This function sets the size of the user part of each frame in the node call stack of a multinode
model to sz bytes. Size 0 means that the model does not use the user part.

The function returns a non-negative value on success or negative error code QSMM_ERR_

UNTIMELY if the model instance already exists.

The function qsmm_create initializes to 0 the size of the user part of each frame in the node
call stack.

On calling a node, the function qsmm_node_call_default creates a new frame in the node
call stack and initializes the user part of this frame with zero bytes. The new frame becomes
the current stack frame. The function qsmm_get_stack_sz returns the total number of frames
in the node call stack.

After creating the current stack frame, qsmm_node_call_default sends an event QSMM_EVT_
NODE_ENTER to the instruction class set of a called node. The event handler of that instruction
class set can process the event to perform application-specific initialization of that current frame.
For example, the event handler may allocate dynamic arrays or copy the parameters of calling the
node to the frame. A pointer to those parameters is an argument of qsmm_node_call_default,
and this function passes this pointer to the event handler via its argument qsmm_param_p.

While executing the node, qsmm_node_call_default sends events QSMM_EVT_ACTIVATE to
the instruction meta-classes of instructions selected for invocation by the instruction emitting

Chapter 4: Multinode Model 160

engine. The event handler of an instruction meta-class can call the function qsmm_return_to_

caller_node to return control from the node or the function qsmm_set_continue with flag

equal to 0 or the macro QSMM_TERMINATE to return control from all nodes in the node call stack.

On returning control from the node, qsmm_node_call_default sends an event QSMM_EVT_

NODE_LEAVE to the instruction class set of that node. The event handler of that instruction class
set can use the content of the current stack frame to compute the results of node invocation and
return those results via a memory block addressed by qsmm_param_p. If necessary, the event
handler performs application-specific uninitialization of the current frame—for example, frees
allocated dynamic arrays.

After sending the event QSMM_EVT_NODE_LEAVE, qsmm_node_call_default destroys the cur-
rent stack frame and exits. If after this destruction the node call stack is not empty, the previous
frame in the stack becomes the current frame.

Use the following function to get a pointer to the user part of a frame in the node call stack.

[Function]int qsmm_get_stack_frame (qsmm t model, int depth, void
**frame_pp)

This function retrieves a pointer to the user part of a frame in the node call stack of a
multinode model at depth. If frame pp is not NULL, the function sets *frame pp equal to this
pointer. A program can access a memory block with size in bytes returned by the function
qsmm_get_stack_frame_sz addressed by the pointer. Depth 0 corresponds to the current
stack frame, depth 1 corresponds to the previous stack frame, and so on.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOUSTACK

The model does not have user part in the frames of node call stack. Use the
function qsmm_set_stack_frame_sz to specify positive size of that user part
before creating the model instance.

QSMM_ERR_UNTIMELY

The node call stack is empty.

QSMM_ERR_INVAL

The argument depth is negative or greater than or equal to the number of frames
in the node call stack returned by the function qsmm_get_stack_sz.

If the structure stack_frame_s holds a user stack frame, use the following call to set the size
of this frame:

qsmm_set_stack_frame_sz(qsmm,sizeof(struct stack_frame_s));

To get a pointer to a current stack frame, use these lines:

struct stack_frame_s *stack_frame_p=0;

qsmm_get_stack_frame(qsmm,0,(void **) &stack_frame_p);

4.3.7 Switching Adaptive or Random Behavior

A multinode model has either a random number generator provided via the field rng of qsmm_
desc_s structure when creating the multinode model or an instance of default random number
generator allocated automatically if that field was NULL. The environment state identification
engine and instruction emitting engine use that random number generator. The purpose of the
following function is to obtain the random number generator of a multinode model.

[Function]qsmm_rng_t qsmm_get_rng (qsmm t model)
This function returns the handle of a random number generator used by the environment state
identification engine and instruction emitting engine of a multinode model. The function
never returns NULL.

Chapter 4: Multinode Model 161

You can use the returned handle of a random number generator to seed the generator after
creating the multinode model or model instance. See Section 6.1 [Random Number Generators],
page 245, for how to seed a random number generator and perform other operations on it.

A useful approach to determine the amount of contribution of optimization mechanism pro-
vided by QSMM to the optimality of behavior of a multinode model is comparing a measure of
optimality for this multinode model behaving adaptively versus a measure of optimality for this
model behaving randomly. The greater the difference is between those values the more contri-
bution the optimization mechanism provided by QSMM makes to the optimality of behavior of
this multinode model.

Use the following function to switch the model instance to random or adaptive (normal)
behavior mode.

[Function]int qsmm_set_random (qsmm t model, int flag)
This function switches the current mode of behavior of instance of a multinode model to
random or adaptive (normal) mode. If flag is non-zero, the function switches the current
mode to random mode. If flag is zero, the function switches the current mode to adaptive
mode.

The function is a short cut to setting the current mode of behavior for the environment
state identification engine and instruction emitting engine of model instance by the function
qsmm_set_actor_random.

On success, the function returns a non-negative value. If the model instance does not exist,
the function returns negative error code QSMM_ERR_UNTIMELY.

The function qsmm_engine_create initializes the current mode of behavior of model instance
to adaptive (normal) mode.

4.3.8 Tracing Model Execution

QSMM provides facilities for tracing events related to a multinode model. You can specify the
types of events dumped to a trace log using a bitmask defined as a subset of the following macros
merged by bitwise “or.”

[Macro]QSMM_TRACE_API
Multinode model API calls entry and exit. API functions with a model handle argument
dump a function name, the names and values of function arguments, and a returned value.

[Macro]QSMM_TRACE_EVT
The beginning and end of processing every model event by event handlers with dumping
event parameters.

[Macro]QSMM_TRACE_CTRL
Calling nodes, returning control from nodes, instruction invocations, and the outcomes of
those invocations.

Use the following functions to query or set a bitmask of types of events dumped to a trace
log.

[Function]unsigned int qsmm_get_trace_flags (qsmm t model)
This function returns the bitmask of types of events dumped to the trace log of a multinode
model. The model is the originator of those events. This function returns a bitmask set by
the function qsmm_set_trace_flags or a default bitmask (see a remark below) if the latter
function not yet called.

Chapter 4: Multinode Model 162

[Function]void qsmm_set_trace_flags (qsmm t model, unsigned int flags)
This function sets to flags the bitmask of types of events dumped to the trace log of a
multinode model. The model is the originator of those events. The function does not check
whether the bitmask is correct.

The function qsmm_create initializes the bitmask of types of events dumped to a trace log
to 0.

A multinode model does not dump messages to a trace log unless the multinode model has
an assigned stream for the trace log. Use the following functions to get or set the stream.

[Function]FILE * qsmm_get_trace_stream (qsmm t model)
This function returns a stream for the trace log of a multinode model. If the model does not
have the stream assigned, the function returns NULL.

[Function]void qsmm_set_trace_stream (qsmm t model, FILE *filep)
This function sets to filep the stream for the trace log of a multinode model. The NULL stream
disables dumping log messages.

Use the following functions to write a custom formatted message to the trace log.

[Function]void qsmm_trace_f (qsmm t model, const char *fmt, ...)
[Function]void qsmm_trace_fv (qsmm t model, const char *fmt, va list ap)

These functions write a formatted message to the trace log of a multinode model. They
append the character ‘\n’ to the message and flush the stream buffer. If the trace stream not
set, the functions have no effect. The meaning of fmt argument and subsequent arguments
of qsmm_trace_f function is the same as in the function printf. The meaning of fmt and
ap arguments of qsmm_trace_fv function is the same as in the function vprintf.

4.4 Listing a Multinode Model

You can dump the state transition matrix and action emission matrix of a node or all nodes of
a multinode model.

To enumerate instruction meta-classes, instruction class sets, and nodes existing in a multin-
ode model, you use datatypes for entity references.

4.4.1 Dumping the State Transition Matrix

The state transition matrix of a node contains transition probabilities of supported types along
with other numeric information. The rows of that matrix biuniquely correspond to quadruples
where each quadruple consists of a source transition state, a user or mixed-type instruction
invoked in the source transition state, the outcome of this instruction, and the content of look-
ahead signal segment. The columns of that matrix biuniquely correspond to target transition
states. Use the following function to dump a state transition matrix to a stream.

[Function]int qsmm_mat_goto_dump_v2 (qsmm t model, int rez1, qsmm sig t
node, struct qsmm dump mat goto desc s *desc_p, FILE *filep)

This function dumps the state transition matrix of a node of a multinode model to a stream
filep according to parameters specified in *desc p. The argument node specifies the identifier
of this node. If node is equal to QSMM_SIG_INVALID, the function dumps the state transition
matrices of all nodes of this multinode model. If desc p is NULL, the function uses default
dumping parameters. The argument rez1 is for future use and must be equal to 0.

In the current implementation, the function does not modify *desc p if desc p is not NULL.
However, in a future implementation, the function may modify *desc p, for example, to store
there statistics on the dumping process.

Chapter 4: Multinode Model 163

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The argument node is not QSMM_SIG_INVALID, and a node with identifier node
does not exist.

QSMM_ERR_INVAL

The argument desc p is not NULL, and parameters in *desc p are invalid.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal as-
signed to the environment state identification engine reported an error by return-
ing NaN. The function qsmm_actor_calc_action_prob calls the helper function.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the model instance in inconsistent state.

The description of a structure specifying dumping parameters is below.

[Structure]qsmm_dump_mat_goto_desc_s
This structure specifies the parameters of dumping the state transition matrix of a node. The
structure contains the following fields.

[Field]char do_print_prob[QSMM_PROB_COUNT]
An array specifying the types of probabilities to dump. The indices of this array are the
elements of qsmm_prob_e enumeration (except for its last element QSMM_PROB_COUNT) de-
scribed in Section 2.5.4 [Emitting an Output Signal], page 41. If an element of this array is
non-zero, the function qsmm_mat_goto_dump_v2 dumps probabilities with a corresponding
type. The default is to dump probabilities of all types.

[Field]int indent
Left indent—the number of spaces to print at the beginning of each line of output. Must
be a non-negative value. The default is to use indent 0.

[Field]int prob_prec
The number of digits after the decimal point to print for probabilities. If that number is
positive, use fixed-point notation. If that number is negative, use exponential notation
with the number of digits after the decimal point equal to the absolute value of this field.
If that number is zero, use exponential notation with 15 digits after the decimal point;
this is the default mode.

Chapter 4: Multinode Model 164

[Field]long fq_min
The minimum value of fq field of an instance of qsmm_cycle_s structure for a matrix
cell. The function qsmm_mat_goto_dump_v2 does not output information on instances
with lesser values of fq field (i.e. with lesser frequency). The default is to use minimum
frequency 0.

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_dump_mat_goto_desc_s structure before setting the fields of this instance
passed to the function qsmm_mat_goto_dump_v2.

Below there is an example fragment of a dump. When generating it, the element QSMM_PROB_
LEARNED of do_print_prob field of qsmm_dump_mat_goto_desc_s structure passed to qsmm_mat_
goto_dump_v2 was non-zero, and all other elements of this field were zero. The example contains
truncated fractional parts of numbers in exponential notation to make lines shorter.

* State 83

A0 |mn| O7 L0 : tmd0=183117, tmc0=6E+4, state_next=45, spur[0].val0=-4E+5, spur[1].val0=4E+2

S45 : pl=1.0E+00, spur[0].ds=-3E+05, spur[1].ds=4E+02, fq=376, ps_d=148416, ps_c=5E+04

S79 : pl=4.2E-267, spur[0].ds=-4E+04, spur[1].ds=1E+01, fq=3, ps_d=23976, ps_c=8E+03

S92 : pl=9.1E-283, spur[0].ds=-2E+04, spur[1].ds=4E+00, fq=2, ps_d=9516, ps_c=3E+03

A0 |mn| O7 L1 : tmd0=183219, tmc0=6E+4, state_next=120, spur[0].val0=-4E+5, spur[1].val0=4E+2

S63 : pl=2.2E-245, spur[0].ds=-4E+04, spur[1].ds=1E+01, fq=5, ps_d=22740, ps_c=8E+03

S87 : pl=2.0E-292, spur[0].ds=-3E+02, spur[1].ds=0E+00, fq=1, ps_d=156, ps_c=5E+01

S120 : pl=1.0E+00, spur[0].ds=-3E+05, spur[1].ds=4E+02, fq=119, ps_d=160185, ps_c=5E+04

Below there are descriptions of output pieces of information. See Section 3.2 [Structures for
Accessing Storage], page 79, for details about referenced structure fields.

Ai An instruction class invoked by the node in a source transition state. Index i
uniquely identifies the instruction class in the instruction class set of the node.
The name of the instruction class enclosed between the characters ‘|’ follows the
token Ai.

Li Look-ahead signal i that was in the look-ahead signal segment when the node was
in a source transition state. The number of Li tokens is equal to look-ahead signal
segment length. The positions of Li tokens are the positions of elements in the
look-ahead signal segment.

Oi Outcome i of an instruction class invoked by the node in a source transition state.

Si The description of a transition to target state i. If the state has a name assigned
by the argument of stt assembler instruction, the name enclosed in double quotes
follows the token Si.

RST This keyword can replace the tokens ‘Ax |name| Oy’ for source transition state 0.
The keyword indicates that specified transitions to target states are initial transi-
tions performed just after transferring control to the node. In this situation, the
node did not yet invoke instructions, so values x and y are unknown.

fq The value of fq field of qsmm_cycle_s structure.

pa Probability of QSMM_PROB_AGGR type.

pf Probability of QSMM_PROB_FQ type.

pl Probability of QSMM_PROB_LEARNED type.

pp Probability of QSMM_PROB_PROFILE type.

Chapter 4: Multinode Model 165

ps_c The value of period_sum_c field of qsmm_cycle_s structure.

ps_d The value of period_sum_d field of qsmm_cycle_s structure.

spur[i].ds

The value of delta_sum field of qsmm_cspur_s structure for spur type i. Spur type
0 is usually the automatic spur.

spur[i].val0

The value of val0 field of qsmm_sspur_s structure for spur type i. Spur type 0 is
usually the automatic spur.

State The index of a source transition state. If the state has a name assigned by the
argument of stt assembler instruction, the name enclosed in double quotes follows
that index.

state_next

The index of target state of last transition made from a source state. That index
corresponds to the value of sig_cycle_next field of qsmm_state_s structure. The
special value ‘N’ corresponds to the value QSMM_SIG_INVALID of this field.

tmc0 The value of tmc0 field of qsmm_state_s structure.

tmd0 The value of tmd0 field of qsmm_state_s structure.

The function qsmm_mat_goto_dump_v2 dumps only the descriptions of state transitions that
have some information in statistics storage. This approach helps reduce the length of output
when dumping a sparse state transition matrix.

When the descriptions of some state transitions are absent in the output because of a positive
value of fq_min field of qsmm_dump_mat_goto_desc_s structure or because statistics storage does
not contain information on some state transitions, the sum of state transition probabilities with
a specific type may be less than 1 in a matrix row. If the field fq_min is zero, every not dumped
transition has probability (1−p)/n, where p is the sum of probabilities of dumped transitions,
and n is the number of not dumped transitions.

4.4.2 Dumping the Action Emission Matrix

The action emission matrix of a node contains the probabilities of emitting all instruction classes
belonging to the instruction class set of this node in all states of this node. The rows of that
matrix biuniquely correspond to node states. The columns of that matrix biuniquely correspond
to instruction classes in the instruction class set. Use the following function to dump an action
emission matrix to a stream.

[Function]int qsmm_mat_action_dump_v2 (qsmm t model, int rez1, qsmm sig t
node, struct qsmm dump mat action desc s *desc_p, FILE *filep)

This function dumps the action emission matrix of a node of a multinode model to a stream
filep according to parameters specified in *desc p. The argument node specifies the identifier
of this node. If node is equal to QSMM_SIG_INVALID, the function dumps the action emission
matrices of all nodes of this multinode model. If desc p is NULL, the function uses default
dumping parameters. The argument rez1 is for future use and must be equal to 0.

In the current implementation, the function does not modify *desc p if desc p is not NULL.
However, in a future implementation, the function may modify *desc p, for example, to store
there statistics on the dumping process.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The argument node is not QSMM_SIG_INVALID, and a node with identifier node
does not exist.

Chapter 4: Multinode Model 166

QSMM_ERR_INVAL

The argument desc p is not NULL, and parameters in *desc p are invalid.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal
assigned to the instruction emitting engine reported an error by returning NaN.
The function qsmm_actor_calc_action_prob calls the helper function.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the model instance in inconsistent state.

The description of a structure specifying dumping parameters is below.

[Structure]qsmm_dump_mat_action_desc_s
This structure specifies the parameters of dumping the action emission matrix of a node. The
structure contains the following fields.

[Field]char do_print_prob[QSMM_PROB_COUNT]
An array specifying the types of probabilities to dump. The indices of this array are
the elements of qsmm_prob_e enumeration (except for its last element QSMM_PROB_COUNT)
described in Section 2.5.4 [Emitting an Output Signal], page 41. If an element of this
array is non-zero, the function qsmm_mat_action_dump_v2 dumps probabilities with a
corresponding type. The default is to dump probabilities of all types.

[Field]int indent
Left indent—the number of spaces to print at the beginning of each line of output. Must
be a non-negative value. The default is to use indent 0.

[Field]int prob_prec
The number of digits after the decimal point to print for probabilities. If that number is
positive, use fixed-point notation. If that number is negative, use exponential notation
with the number of digits after the decimal point equal to the absolute value of this field.
If that number is zero, use exponential notation with 15 digits after the decimal point;
this is the default mode.

[Field]long fq_min
The minimum value of fq field of an instance of qsmm_cycle_s structure for a matrix
cell. The function qsmm_mat_action_dump_v2 does not output information on instances
with lesser values of fq field (i.e. with lesser frequency). The default is to use minimum
frequency 0.

Chapter 4: Multinode Model 167

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_dump_mat_action_desc_s structure before setting the fields of this instance
passed to the function qsmm_mat_action_dump_v2.

Below there is an example fragment of a dump. When generating it, the element QSMM_

PROB_LEARNED of do_print_prob field of qsmm_dump_mat_action_desc_s structure passed to
qsmm_mat_action_dump_v2 was non-zero, and all other elements of this field were zero. The
example contains truncated fractional parts of numbers in exponential notation to make lines
shorter.

* State 1 : tmd0=2711, tmc0=1.205...E+03, action_next=0, spur[0].val0=4.000...E+00

A0 |me| : pl=9.9306...E-01, spur[0].ds=4.0...E+00, fq=43, ps_d=1965, ps_c=8.22...E+02

A1 |ms| : pl=3.4713...E-03, spur[0].ds=0.0...E+00, fq=49, ps_d=147, ps_c=9.80...E+01

A2 |mw| : pl=3.4713...E-03, spur[0].ds=0.0...E+00, fq=36, ps_d=108, ps_c=7.20...E+01

Below there are descriptions of output pieces of information. See Section 3.2 [Structures for
Accessing Storage], page 79, for details about referenced structure fields.

Ai Information on an instruction class emitted in a node state. Index i uniquely iden-
tifies the instruction class in the instruction class set of the node. The name of the
instruction class enclosed between the characters ‘|’ follows the token Ai.

action_next

The index of last instruction class emitted in a node state. That index corresponds
to the value of sig_cycle_next field of qsmm_state_s structure. The special value
‘N’ corresponds to the value QSMM_SIG_INVALID of this field.

fq The value of fq field of qsmm_cycle_s structure.

pa Probability of QSMM_PROB_AGGR type.

pf Probability of QSMM_PROB_FQ type.

pl Probability of QSMM_PROB_LEARNED type.

pp Probability of QSMM_PROB_PROFILE type.

ps_c The value of period_sum_c field of qsmm_cycle_s structure.

ps_d The value of period_sum_d field of qsmm_cycle_s structure.

spur[i].ds

The value of delta_sum field of qsmm_cspur_s structure for spur type i.

spur[i].val0

The value of val0 field of qsmm_sspur_s structure for spur type i.

State The description of a state with a specific index. If the state has a name assigned
by the argument of stt assembler instruction, the name enclosed in double quotes
follows this index.

tmc0 The value of tmc0 field of qsmm_state_s structure.

tmd0 The value of tmd0 field of qsmm_state_s structure.

The function qsmm_mat_action_dump_v2 only dumps information on instruction classes con-
tained in statistics storage. This approach helps reduce the length of output when dumping a
sparse action emission matrix.

When information on some instruction classes is absent in the output because of a positive
value of fq_min field of qsmm_dump_mat_action_desc_s structure or because statistics storage
does not contain information on some instruction classes for some node states, the sum of action
emission probabilities with a specific type may be less than 1 in a matrix row. If the field fq_min

Chapter 4: Multinode Model 168

is zero, every not dumped instruction class has emission probability (1−p)/n, where p is the
sum of probabilities of instruction classes dumped for a node state, and n is the number of
instruction classes not dumped for the node state.

4.4.3 Entity References

Entity references identify entities existing in a multinode model. This identification is necessary
when enumerating entities in the multinode model and when passing information about entities
associated with an occurred error to a model error handler. See Section 4.5 [Error Handling for
a Multinode Model], page 172, for information about the error handler of a multinode model.
The header file refe.h contains declarations related to entity references. The notion of entity
referred to by an entity reference has nothing to do with virtual or logical entities represented
by the state models of nodes of a multinode model.

The basic type of an entity reference is local entity reference. A local entity reference identifies
an entity within some known context. The following enumeration declares the types of local
entity references.

[Enumeration]qsmm_lref_e
This enumeration categorizes entities that are parts of a multinode model. The enumeration
contains the following elements.

QSMM_LREF_INVALID

Invalid entity type. This element indicates unknown entity type or the type of a
nonexistent entity.

QSMM_LREF_INSTR_CLASS_SET

An instruction class set.

QSMM_LREF_INSTR_META_CLASS

An instruction meta-class.

QSMM_LREF_NODE

A node.

QSMM_LREF_PROB_VAR_CTRL

A controlled probability variable. See Section 5.9.2 [Controlled Variables],
page 210.

QSMM_LREF_PROB_VAR_OUT

An output probability variable. See Section 5.9.3 [Output Variables], page 213.

QSMM_LREF_PROB_ARR_OUT

An output probabilities array. See Section 5.9.4 [Output Arrays], page 219.

QSMM_LREF_INSTR_CLASS

An instruction class.

QSMM_LREF_COUNT

The number of supported types of local entity references.

The following union represents a local entity identifier for a local entity reference.

[Union]qsmm_lref_u
This union holds a local entity identifier for a local entity reference with the type specified
by an element of qsmm_lref_e enumeration. The union contains the following fields.

[Field]char *name
An entity name. It is applicable to local entity references of QSMM_LREF_INSTR_CLASS_SET,
QSMM_LREF_INSTR_META_CLASS, QSMM_LREF_PROB_VAR_CTRL, QSMM_LREF_PROB_VAR_OUT,
and QSMM_LREF_PROB_ARR_OUT types.

Chapter 4: Multinode Model 169

[Field]qsmm_sig_t sig
A local entity identifier represented by a signal. It is applicable to local entity references
of QSMM_LREF_NODE type.

[Field]struct qsmm_instr_class_s instr_class
An instruction class descriptor. It is applicable to local entity references of QSMM_LREF_
INSTR_CLASS type.

The following structure holds an instruction class descriptor in the field instr_class of
qsmm_lref_u union for local entity references of QSMM_LREF_INSTR_CLASS type.

[Structure]qsmm_instr_class_s
This structure holds an instruction class descriptor identifying an instruction class. The
structure contains the following fields.

[Field]char *meta_class_name
An instruction meta-class name.

[Field]char *param_str_p
Text instruction class parameters in the canonical form (see Section 4.2.2.6 [Setting Text
Instruction Parameters], page 119). The empty string means empty text parameters. The
NULL value means that the text parameters are unknown.

[Field]qsmm_sig_t idx
An instruction class index. It uniquely identifies the instruction class in an instruction
class set. The value QSMM_SIG_INVALID means that the index is unknown.

[Field]size_t param_bin_sz
The size of binary instruction class parameters. If binary parameters are unknown, this
field must be equal to 0.

[Field]void *param_bin_p
Binary instruction class parameters. If this field is not NULL, it must address a memory
block with size in bytes specified by the field param_bin_sz. If this field is NULL, then
binary parameters are unknown, and the field param_bin_sz must be equal to 0.

The following structure represents a complete local entity reference.

[Structure]qsmm_lref_s
This structure holds the type of a local entity reference along with a local entity identifier.
The structure contains the following fields.

[Field]enum qsmm_lref_e type
The type of a local entity reference.

[Field]union qsmm_lref_u val
The value of a local entity reference depending on its type. For the type QSMM_LREF_

INVALID, must be a block of zero bytes.

A global entity reference identifies an entity in the address space of a running process. The
error handler of a multinode model receives global references to entities related to errors. The
type of a global entity reference specifies a method of identifying an entity. The following
enumeration declares the types of global entity references.

Chapter 4: Multinode Model 170

[Enumeration]qsmm_gref_e
This enumeration specifies a method of identification of an entity in the address space of a
running process. The enumeration contains the following elements.

QSMM_GREF_INVALID

Invalid global entity reference, including the absence of an entity to identify.

QSMM_GREF_HANDLE_LREF

An object handle and a local entity reference. This method of identification
is applicable to local entity references of QSMM_LREF_INSTR_CLASS_SET, QSMM_
LREF_INSTR_META_CLASS, and QSMM_LREF_NODE types. The object handle has
the type QSMM_HANDLE_MODEL and refers to a multinode model containing an
instruction class set, instruction meta-class, or node.

QSMM_GREF_HANDLE_LREF2

An object handle, the local entity reference of a container, and the local entity
reference of a contained entity. This method of identification is applicable to lo-
cal entity references of QSMM_LREF_PROB_VAR_CTRL, QSMM_LREF_PROB_VAR_OUT,
QSMM_LREF_PROB_ARR_OUT, and QSMM_LREF_INSTR_CLASS types for contained en-
tities. The object handle has the type QSMM_HANDLE_MODEL and refers to a multin-
ode model with the container. The local entity reference of the container has the
type QSMM_LREF_NODE for a controlled probability variable, output probability
variable, or output probabilities array contained in a node or the type QSMM_

LREF_INSTR_CLASS_SET for an instruction class contained in an instruction class
set.

The following union represents a global entity identifier for a global entity reference.

[Union]qsmm_gref_u
This union holds a global entity identifier for a global entity reference with the type specified
by an element of qsmm_gref_e enumeration. The union contains the following fields.

[Field]struct qsmm_handle_lref_s handle_lref
An object handle and a local entity reference. This field is for a global entity reference of
QSMM_GREF_HANDLE_LREF type.

[Field]struct qsmm_handle_lref2_s handle_lref2
An object handle, the local entity reference of a container, and the local entity reference of
a contained entity. This field is for a global entity reference of QSMM_GREF_HANDLE_LREF2
type.

The following structure holds an object handle and local entity reference in the field handle_

lref of qsmm_gref_u union for global entity references of QSMM_GREF_HANDLE_LREF type.

[Structure]qsmm_handle_lref_s
This structure holds the handle of an object and a local entity reference for an entity contained
in the object. The structure contains the following fields.

[Field]struct qsmm_handle_s handle
The handle of a containing object. At present, can only be a handle of QSMM_HANDLE_MODEL
type.

[Field]struct qsmm_lref_s lref
A local entity reference for an entity contained in an object. At present, can be a lo-
cal entity reference of QSMM_LREF_INSTR_CLASS_SET, QSMM_LREF_INSTR_META_CLASS, or
QSMM_LREF_NODE type, where the containing object is a multinode model.

Chapter 4: Multinode Model 171

The following structure holds an object handle, the local entity reference of a container, and
the local entity reference of a contained entity in the field handle_lref2 of qsmm_gref_u union
for global entity references of QSMM_GREF_HANDLE_LREF2 type.

[Structure]qsmm_handle_lref2_s
This structure holds the handle of an object, the local entity reference of a container in the
object, and a local entity reference for an entity in the container. The structure contains the
following fields.

[Field]struct qsmm_handle_s handle
The handle of an object. At present, can only be a handle of QSMM_HANDLE_MODEL type.

[Field]struct qsmm_lref_s container
The local entity reference of a container in an object. At present, can be a local entity
reference of QSMM_LREF_NODE or QSMM_LREF_INSTR_CLASS_SET type, where the containing
object is a multinode model.

[Field]struct qsmm_lref_s lref
A local entity reference for an entity in a container. At present, can be:

– a local entity reference of QSMM_LREF_PROB_VAR_CTRL, QSMM_LREF_PROB_VAR_OUT, or
QSMM_LREF_PROB_ARR_OUT type for the container specified by a local entity reference
of QSMM_LREF_NODE type;

– a local entity reference of QSMM_LREF_INSTR_CLASS type for the container specified
by a local entity reference of QSMM_LREF_INSTR_CLASS_SET type.

The following structure represents a complete global entity reference.

[Structure]qsmm_gref_s
This structure holds the type of a global entity reference along with a global entity identifier.
The structure contains the following fields.

[Field]enum qsmm_gref_e type
The type of a global entity reference.

[Field]union qsmm_gref_u val
The value of a global entity reference depending on its type. For the type QSMM_GREF_

INVALID, must be a block of zero bytes.

4.4.4 Enumerating Entities

Instruction meta-classes and instruction class sets are entities a multinode model normally con-
tains. Local entity references of QSMM_LREF_INSTR_META_CLASS and QSMM_LREF_INSTR_CLASS_

SET types identify those entities by names. They share the same name space and cannot be
duplicate, because those entities have event handler functions with names equal to entity names
by default, and function names must be unique in certain scopes.

Use the following function to enumerate instruction meta-classes, instruction class sets, or
nodes in a multinode model.

[Function]int qsmm_enum_ent (qsmm t model, enum qsmm lref e ent_type,
qsmm enum ent callback func t callback_func, void *paramp)

This function enumerates all entities of ent type type stored in a multinode model. The pro-
cess of enumeration is repeated calling a callback function callback func receiving the type of
a local entity reference, a local entity identifier, and a user parameter paramp. If the callback
function returns a positive value, the function qsmm_enum_ent continues the enumeration. If
the callback function returns zero, qsmm_enum_ent terminates the enumeration and reports

Chapter 4: Multinode Model 172

success. If the callback function returns a negative value, qsmm_enum_ent terminates the
enumeration and reports failure.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument ent type is not QSMM_LREF_INSTR_META_CLASS, QSMM_LREF_

INSTR_CLASS_SET, and QSMM_LREF_NODE.

QSMM_ERR_CALLBACK

The callback function reported an error.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The type of a pointer to a callback function called for every enumerated entity is below.

[Data type]qsmm_enum_ent_callback_func_t
This is a type of a callback function pointer with the following declaration:

typedef int

(*qsmm_enum_ent_callback_func_t)(

qsmm_t model,

enum qsmm_lref_e lref_type,

const union qsmm_lref_u *lref_p,

void *paramp

);

An enumeration function calls the callback function for every enumerated entity of a multin-
ode model. The argument lref type specifies the type of an enumerated entity as the type
of a local entity reference. The argument lref p specifies the identifier of this entity as a
local entity identifier. The argument paramp is a user parameter passed to the enumeration
function.

The callback function shall return a positive value to continue the process of enumeration,
zero to terminate the process of enumeration, or a negative value on error.

The function qsmm_enum_var_prob uses a callback function of qsmm_enum_ent_callback_
func_t type for enumerating the controlled probability variables of an instruction class set.
The function qsmm_enum_var_prob_out uses this callback function for enumerating the output
probability variables of a node.

Use the following function to query the type of an entity by its name.

[Function]enum qsmm_lref_e qsmm_get_ent_type_by_name (qsmm t model, const
char *ent_name)

This function returns the type of a local entity reference for an entity named ent name
stored in a multinode model. The function only supports local entity references of QSMM_
LREF_INSTR_META_CLASS and QSMM_LREF_INSTR_CLASS_SET types. If the entity does not
exist or is not an instruction meta-class and instruction class set, the function returns QSMM_
LREF_INVALID.

4.5 Error Handling for a Multinode Model

A multinode model can have an error handler assigned to it. The error handler is a function
called in the case of a failure in any QSMM API function that takes an argument of qsmm_t
type and can return an error code of int type. The default error handler of a multinode model
prints information on an occurred error to stderr and calls exit(2). The output consists of

Chapter 4: Multinode Model 173

the name of that default error handler function followed by an indented description of an error
as object content in JSON format. If a multinode model does not have an error handler assigned
(including the default error handler), or an error handler assigned to the multinode model does
not terminate program execution and returns, a failed API function returns a corresponding
error code.

Use the following functions to query or set an error handler for a multinode model.

[Function]void qsmm_get_err_handler (qsmm t model, qsmm err handler func t
*func_p, void **param_pp)

This function retrieves information on an error handler assigned to a multinode model. If
func p is not NULL, the function sets *func p to the pointer to the error handler function or
to NULL if the model does not have the error handler function assigned. If param pp is not
NULL, the function sets *param pp to the user parameter of that error handler function.

[Function]void qsmm_set_err_handler (qsmm t model, qsmm err handler func t
func, void *paramp)

This function assigns an error handler to a multinode model. The argument func specifies
an error handler function. The argument paramp specifies the user parameter of this error
handler function. If func is NULL, the model does not use an error handler.

An error handler function receives extended information on some types of errors. The header
file err.h included in qsmm.h contains a declaration for the type of an error handler function.
The Side API also uses this type for the error handler of an interaction side (see Section 6.4.4
[Error Handling for the Side API], page 261, for more information).

[Data type]qsmm_err_handler_func_t
This is a type of an error handler function pointer with the following declaration:

typedef void

(*qsmm_err_handler_func_t)(

void *rez1,

struct qsmm_except_s *except_p,

void *paramp

);

The argument except p passes information on an occurred error. The argument paramp is a
user parameter specified when setting the error handler function for a multinode model. You
should not access the reserved argument rez1.

The description of a structure containing information on an occurred error is below. The
header file err.h contains the declaration of this structure.

[Structure]qsmm_except_s
This structure is for passing information about an occurred error to an error handler function.
The structure contains the following fields.

[Field]const char * func_name
The name of a QSMM library function where the error occurred. That name might be the
name of an internal library function and not an API function.

[Field]int code
An error code to return by a failed QSMM API function after returning from the error
handler function.

[Field]union qsmm_except_u ee
Extended information on the occurred error. A list of error codes with extended error
information always provided in this field is in the description of qsmm_except_u union.

Chapter 4: Multinode Model 174

The description of a union containing extended error information depending on an error code
is below. The header file err.h contains the declaration of this union.

[Union]qsmm_except_u
This union contains fields corresponding to error codes that can have associated extended
error information.

[Field]char * noic
Extended information for error code QSMM_ERR_NOIC. The description of this error code
is “instruction class set is empty.” This field contains the name of an instruction class set
without instruction classes.

[Field]int callback
Extended information for error code QSMM_ERR_CALLBACK. The description of this error
code is “callback function reported an error.” This field contains an error code returned
by a callback function.

[Field]qsmm_sig_t noprof
Extended information for error code QSMM_ERR_NOPROF. The description of this error code
is “node has no probability profile specified.” This field contains the identifier of a node
without a probability profile specified.

[Field]qsmm_sig_t violnode
Extended information for error code QSMM_ERR_VIOLNODE. The description of this error
code is “change violates the parameters of an already created node.” This field contains the
identifier of a node that prevents making a change because it would violate the parameters
of this node.

[Field]qsmm_msglist_t prg
Extended information for error code QSMM_ERR_PRG. The description of this error code
is “invalid program.” This field contains a message list that hands over information on
errors in an assembler program.

[Field]qsmm_storage_t storage
Extended information for error code QSMM_ERR_STORAGE. The description of this error
code is “storage failure.” This field refers to failed storage.

[Field]size_t mprof
Extended information for error code QSMM_ERR_MPROF. The description of this error code
is “too many probabilities lists in normal form.” This field contains the maximum number
of elements in the pool of probabilities lists in normal form.

[Field]struct qsmm_except_notfound_s notfound
Extended information for error code QSMM_ERR_NOTFOUND. The description of this error
code is “entity not found.”

[Field]struct qsmm_except_type_s type
Extended information for error code QSMM_ERR_TYPE. The description of this error code
is “invalid entity type.”

[Field]struct qsmm_except_exist_s exist
Extended information for error code QSMM_ERR_EXIST. The description of this error code
is “entity already exists.”

[Field]struct qsmm_except_outcome_s outcome
Extended information for error code QSMM_ERR_OUTCOME. The description of this error
code is “invalid instruction outcome.”

Chapter 4: Multinode Model 175

[Field]struct qsmm_except_evthndlr_s evthndlr
Extended information for error code QSMM_ERR_EVTHNDLR. The description of this error
code is “event handler function reported an error.”

[Field]struct qsmm_except_nostate_s nostate
Extended information for error code QSMM_ERR_NOSTATE. The description of this error
code is “not enough node states to hold the probability profile.”

[Field]struct qsmm_except_noeqclas_s noeqclas
Extended information for error code QSMM_ERR_NOEQCLAS. The description of this error
code is “node classes are different.”

[Field]struct qsmm_except_profsrcp_s profsrcp
Extended information for error code QSMM_ERR_PROFSRCP. The description of this error
code is “node is a probability profile source for other nodes.”

[Field]struct qsmm_except_profsrcu_s profsrcu
Extended information for error code QSMM_ERR_PROFSRCU. The description of this error
code is “node is a user of a source probability profile provided by another node.”

[Field]struct qsmm_except_psumgt1_s psumgt1
Extended information for error code QSMM_ERR_PSUMGT1. The description of this error
code is “sum of probabilities would exceed 1.”

Use the following function to dump the content of qsmm_except_s structure to a stream in
JSON format.

[Function]void qsmm_except_dump (void *rez1, int indent, const struct
qsmm except s *except_p, FILE *filep)

This function dumps error information in *except p to a stream filep in JSON format as
object content. The argument indent must be non-negative. It specifies left indent—the
number of spaces to print at the beginning of each line of output. You should pass 0 for the
reserved argument rez1.

The rest of this section describes the structures that are the fields of qsmm_except_u union.
The header file err.h contains the declarations of those structures. Some of them have
fields of enum qsmm_lref_e, struct qsmm_gref_s, and struct qsmm_instr_class_s types. See
Section 4.4.3 [Entity References], page 168, for the descriptions of these types.

[Structure]qsmm_except_notfound_s
This structure provides extended information for error code QSMM_ERR_NOTFOUND. The de-
scription of this error code is “entity not found.” The structure contains the following field.

[Field]struct qsmm_gref_s gref
A reference to a not found entity.

[Structure]qsmm_except_type_s
This structure provides extended information for error code QSMM_ERR_TYPE. The description
of this error code is “invalid entity type.” The structure contains the following fields.

[Field]enum qsmm_lref_e type_required
A required type for the entity.

[Field]struct qsmm_gref_s gref
A reference to the entity that has an invalid type.

Chapter 4: Multinode Model 176

[Structure]qsmm_except_exist_s
This structure provides extended information for error code QSMM_ERR_EXIST. The descrip-
tion of this error code is “entity already exists.” The structure contains the following field.

[Field]struct qsmm_gref_s gref
A reference to an already existing entity.

[Structure]qsmm_except_outcome_s
This structure provides extended information for error code QSMM_ERR_OUTCOME. The descrip-
tion of this error code is “invalid instruction outcome.” The structure contains the following
fields.

[Field]qsmm_sig_t node
The identifier of a node invoked the assembler instruction.

[Field]qsmm_sig_t outcome
An invalid instruction outcome.

[Field]qsmm_sig_t noutcome
The number of outcomes of the assembler instruction.

[Field]qsmm_t model
A multinode model containing a node invoked the assembler instruction.

[Field]struct qsmm_instr_class_s instr_class
The descriptor of an instruction class for the assembler instruction.

[Structure]qsmm_except_evthndlr_s
This structure provides extended information for error code QSMM_ERR_EVTHNDLR. The de-
scription of this error code is “event handler function reported an error.” The structure
contains the following fields.

[Field]int rc
A negative return value of the event handler function.

[Field]int evt
An event type passed to the event handler function—one of constants defined by the
QSMM_EVT_* macros.

[Field]int node
The identifier of a node associated with the event. A negative value means no node
association.

[Field]struct qsmm_gref_s gref
A reference to an entity emitting events processed by the event handler function.

[Structure]qsmm_except_nostate_s
This structure provides extended information for error code QSMM_ERR_NOSTATE. The de-
scription of this error code is “not enough node states to hold the probability profile.” The
structure contains the following fields.

[Field]qsmm_sig_t node
The identifier of a node that has or would have the number of states less than it is necessary
to hold the probability profile.

[Field]qsmm_sig_t nstate_required
The minimum number of states the node must have to hold the probability profile.

Chapter 4: Multinode Model 177

[Structure]qsmm_except_noeqclas_s
This structure provides extended information for error code QSMM_ERR_NOEQCLAS. The de-
scription of this error code is “node classes are different.” The structure contains the following
fields.

[Field]char * node_class_name_1
The name of the first node class, that is, the first instruction class set.

[Field]char * node_class_name_2
The name of the second node class, that is, the second instruction class set.

[Field]qsmm_sig_t node1
The identifier of a node belonging to the first node class. If that identifier is QSMM_SIG_
INVALID, this parameter is not applicable.

[Field]qsmm_sig_t node2
The identifier of a node belonging to the second node class. If that identifier is QSMM_SIG_
INVALID, this parameter is not applicable.

[Field]qsmm_t model
A multinode model containing the node classes.

[Structure]qsmm_except_profsrcp_s
This structure provides extended information for error code QSMM_ERR_PROFSRCP. The de-
scription of this error code is “node is a probability profile source for other nodes.” The
structure contains the following fields.

[Field]qsmm_sig_t node_provider
The identifier of a node acting as a probability profile source for other nodes.

[Field]qsmm_sig_t nnode_user
The number of nodes acting as probability profile users.

[Field]qsmm_t model
A multinode model containing the nodes.

[Structure]qsmm_except_profsrcu_s
This structure provides extended information for error code QSMM_ERR_PROFSRCU. The de-
scription of this error code is “node is a user of a source probability profile provided by
another node.” The structure contains the following fields.

[Field]qsmm_sig_t node_provider
The identifier of a node acting as a probability profile source.

[Field]qsmm_sig_t node_user
The identifier of a node acting as a probability profile user.

[Field]qsmm_t model
A multinode model containing the nodes.

[Structure]qsmm_except_psumgt1_s
This structure provides extended information for error code QSMM_ERR_PSUMGT1. The de-
scription of this error code is “sum of probabilities would exceed 1.” The structure contains
the following fields.

178

[Field]char * var_name
The name of a controlled probability variable with an assigned value. This assignment
causes the sum of probabilities of case instructions in a choice instruction block to exceed
1.

[Field]qsmm_sig_t node
The identifier of a node containing a state corresponding to a choice instruction block.

[Field]qsmm_sig_t state
The index of a node state corresponding to a choice instruction block.

[Field]qsmm_t model
A multinode model containing the node.

179

5 Assembler Programs

QSMM assembler programs are the means of:

– specifying the probability profiles of nodes of a multinode model in algorithmic form;

– printing learned state models of those nodes;

– changing profile probabilities for the state models and fetching learned probabilities from
the state models.

The use of assembler programs relies heavily on instruction meta-classes, instruction classes,
and instruction class sets registered for a multinode model. The name of an instruction meta-
class and the text parameters of an instruction class derived from the instruction meta-class
identify assembler instructions belonging to this instruction class in assembler programs. Such
assembler instructions fall into the category of user instructions with custom names. The other
two categories of assembler instructions are built-in and mixed-type instructions with standard
names.

A handle of qsmm_prg_t type refers to a memory representation of an assembler program.
This memory representation is convertible to an assembler program text and vice versa. Infor-
mation on assembler instructions is accessible by their indices in the memory representation.

Disassembling a node is converting its state model to an assembler program. Assembling
a node is converting an assembler program to a probability profile for the state model of this
node. A special mode of assembling a node is storing its assembler program as a template for
a subsequent disassembling. In this case, a learned disassembled program is a template assem-
bler program with learned probabilities replacing profile probabilities specified in the template
assembler program.

An assembler program can contain probability variables along with their initial values spec-
ifying profile probabilities. A probability variable can be a controlled probability variable or an
output probability variable. The instruction class set of a node specifies a set of allowed names of
controlled probability variables. Changing the value of a controlled probability variable of a node
results in changing one or more profile probabilities for the state model of this node. Output
probability variables are the means of fetching specific probabilities from a learned state model
of a node. Output probabilities arrays hand over learned probabilities for the case branches of
choice instruction blocks.

Cloning a probability profile is helpful if multiple nodes have the same probability profile. It is
faster to clone a probability profile from a node to other nodes than to assemble all those nodes
using the same assembler program. A special cloning mode is deferred cloning a probability
profile. This mode can decrease memory consumption by a multinode model.

Unloading the probability profile of a node additionally clears the learned state model of this
node and breaks its correspondence with a node providing a source probability profile cloned in
deferred mode.

The assembler preprocessor can preprocess an assembler program text before parsing it. The
preprocessor provides capabilities for including other assembler source files in a preprocessed
source file, defining and expanding basic macros, and generating unique location labels to pro-
duce a correct assembler program when expanding the same macro multiple times.

5.1 Basic Datatypes

A program handle refers to a memory representation of an assembler program.

[Data type]qsmm_prg_t
This is a type for a program handle. It is a pointer, so variables of this type can be NULL.
The functions qsmm_node_disasm, qsmm_parse_asm_source_buf, qsmm_parse_asm_source_
stream, and qsmm_parse_asm_source_file allocate a new program handle. The function

Chapter 5: Assembler Programs 180

qsmm_prg_destroy frees an existing program handle. You can pass a program handle to API

functions taking an argument of qsmm_prg_t type until freeing the handle.

Use the following function to destroy a memory representation of an assembler program.

[Function]void qsmm_prg_destroy (qsmm prg t prg)
This function destroys a memory representation of an assembler program specified by a handle
prg. You must not use the handle after the destruction of this memory representation. If prg
is NULL, the function has no effect.

QSMM provides limited capabilities for working with assembler instructions contained in a
memory representation of an assembler program. An instruction handle refers to an assembler
instruction.

[Data type]qsmm_instr_t
This is a type for an instruction handle. It is a pointer, so variables of this type can be
NULL. The functions qsmm_get_prg_instr and qsmm_get_instr_nested (see Section 5.5
[Inspecting an Assembler Program], page 195) return the handle of an existing instruction.

5.2 Assembler Program Syntax

An assembler program consists of lines. You can use empty lines to decorate the program.
Comments are line characters starting with the first character ‘;’ outside a string literal; such
literals can be parts of parameters of an assembler instruction (see Section 4.2.2.6 [Setting
Text Instruction Parameters], page 119, for more information on string literals). For proper
identification of continuation of multi-line comments, align the characters ‘;’ starting every line
of a multi-line comment one beneath the another.

If the first character on a line is not a whitespace character and not ‘;’, then that first
character must be the start of a label definition. There are two possible types of labels: location
labels and data labels. The definitions of location labels end with the character ‘:’. The
definitions of data labels do not end with that character. The first character of a label must be
an English letter or the character ‘_’. Every subsequent character of the label (except for the
last character ‘:’ in the definition of a location label) must be an English letter, digit, or ‘_’.
The definition of a location label can be on a separate line, or at least one whitespace character
and an assembler instruction can follow that definition. At least one whitespace character and
the ‘prob’ keyword (see Section 5.9.1 [Variables in an Assembler Program], page 209, for more
information on that keyword) must follow the definition of a data label.

If a line starts with at least one whitespace character, then an assembler instruction can follow
these whitespace characters. The assembler instruction consists of an instruction name option-
ally followed by at least one whitespace character and instruction parameters. The assembler
ignores whitespace characters in instruction parameters outside string literals.

A sample assembler program is below:

L1: stt

jprob 0.5, L2 ; jump with probability 0.5

foo 4 ; user instruction

jmp L1

L2: bar r3, 5 ; user instruction

jmp L1

At present, an assembler program can contain “data” and “code” sections. The “data”
sections can define probability variables using the ‘prob’ keyword following a data label and at
least one whitespace character. The “code” sections can contain assembler instructions. The

Chapter 5: Assembler Programs 181

‘.data’ and ‘.code’ directives mark the beginnings of blocks of “data” and “code” sections
respectively. Those directives must be on lines of their own (after at least one whitespace
character at the beginning of a line). If an assembler program contains multiple ‘.data’ and
‘.code’ directives, the assembler merges the corresponding blocks into a single “data” section
and a single “code” section. By default, the assembler assumes that an assembler program starts
with a ‘.code’ block.

The assembler supports the ‘line’ directive and uses information changed by it when printing
error, warning, and note messages. You can put that directive in an assembler program explicitly,
or the assembler preprocessor (see Section 5.13 [Using the Assembler Preprocessor], page 229)
may generate it. The ‘line’ directive can change the current line number in the source file,
the name of that source file, the stack of include locations, and the stack of macro expansion
locations tracked by the assembler. This manual does not document changing the stack of
include locations and the stack of macro expansion locations, because the corresponding syntax
of ‘line’ directive will likely be different in future QSMM versions.

The directive must be on a separate line (after at least one whitespace character at the
beginning of the line) and should have one of the following formats:

line line_number

line line_number, file_name

In the first case, the directive changes the tracked number of the next line in the current
source file to line number. In the second case, the directive changes the tracked number of the
next line to line number and the tracked name of the current source file to file name. The
parameter file name must be a (quoted) string literal.

5.3 Assembler Instructions

In QSMM, there are three categories of assembler instructions: built-in instructions, user in-
structions, and mixed-type instructions.

The built-in instructions are case, choice, end, jmp, joe, jprob, and stt. The assembler
understands the built-in instructions without a prior definition of corresponding instruction
classes and meta-classes. The built-in instructions do not necessarily induce code for execution
by some kind of a machine; they can be the control words affecting the structure of a machine.

User instructions are assembler instructions with application-specific behavior. You declare
a custom set of user instructions in an application program by registering instruction classes
and meta-classes. You implement the execution of actions associated with the user instructions
in the event handlers of instruction meta-classes.

The mixed-type instructions are abort, lookup, nop, and nop1. The disassembler can gener-
ate abort, lookup, and nop1 instructions, but assembling them requires defining the correspond-
ing instruction classes and meta-classes. Their implementation can be specific to an application
program. In certain cases, the assembler may implicitly generate nop instructions, but assem-
bling them fails without a definition of the corresponding instruction class and meta-class.

5.3.1 jmp Instruction

The instruction has the syntax

jmp loc_label

and specifies transferring control to a location label loc label. The location label should have
the following definition elsewhere in the assembler program:

loc_label:

Chapter 5: Assembler Programs 182

5.3.2 jprob Instruction

This instruction has the following forms:

jprob number, loc_label

jprob var_name, loc_label

It specifies control transfer to a location label loc label with probability number or with profile
probability stored in a variable var name. The parameter number must be in the range 0 to 1
inclusive. The assembler supports fixed-point and exponential notations for number.

The jprob instruction effectively sets a profile probability in the action emission matrix or
at least one profile probability in the state transition matrix. If an stt instruction precedes
a contiguous block of jprob instructions, these jprob instructions set profile probabilities in
the action emission matrix. If an stt instruction does not precede a contiguous block of jprob
instructions, these jprob instructions set profile probabilities in the state transition matrix. See
Section 5.3.5 [stt Instruction], page 184, for more information.

If the assembler expects a user instruction at a particular location but encounters a contiguous
block of jprob instructions at this location, the assembler implicitly inserts a nop instruction be-
fore the contiguous block and treats it as possible transitions to states made after the invocation
of this nop instruction.

Let us consider a block of jprob instructions like this:

jprob prob1, L1

jprob prob2, L2

jprob prob3, L3

The probabilities of jumps to various destinations are the following:

Jump destination Probability value

The location label L1 prob1

The second jprob instruction 1−prob1

The location label L2 (1−prob1)*prob2

The third jprob instruction (1−prob1)*(1−prob2)

The location label L3 (1−prob1)*(1−prob2)*prob3

An instruction following the third
jprob instruction

(1−prob1)*(1−prob2)*(1−prob3)

5.3.3 choice Instruction Block

This instruction block has the format

choice

case ...

case ...

...

end choice

It consists of a choice instruction, at least one case instruction, and an end choice instruction.
The instructions case and end choice must not have location labels assigned.

Each case instruction must have one of the following forms:

case number, loc_label

case var_name, loc_label

Chapter 5: Assembler Programs 183

These case instructions specify control transfer to a location label loc label with probability
number or with profile probability stored in a variable var name. The parameter number must
be in the range 0 to 1 inclusive. The assembler supports fixed-point and exponential notations
for number. If a choice instruction has a location label assigned, then you must not use this
location label as the second argument of case instructions in the choice instruction block.

The choice instruction block effectively sets profile probabilities in the action emission ma-
trix or state transition matrix. If an stt instruction precedes a particular choice instruction
block, this instruction block sets profile probabilities in the action emission matrix. If an stt

instruction does not precede a particular choice instruction block, this instruction block sets
profile probabilities in the state transition matrix. See Section 5.3.5 [stt Instruction], page 184,
for more information.

If the assembler expects a user instruction at a particular location but encounters a choice

instruction block at this location, the assembler implicitly inserts a nop instruction before the
choice instruction block and treats it as possible transitions to states made after the invocation
of this nop instruction.

In contrast to a contiguous block of jprob instructions, a choice instruction block allows
you to specify jump probabilities in a direct way. Let us consider a choice instruction block
like this:

choice

case prob1, L1

case prob2, L2

case prob3, L3

end choice

The probabilities of jumps to various destinations are the following:

Jump destination Probability value

The location label L1 prob1

The location label L2 prob2

The location label L3 prob3

An instruction following the choice

instruction block
1−prob1−prob2−prob3

Compare this example to the example with a block of jprob instructions in Section 5.3.2
[jprob Instruction], page 182.

5.3.4 joe Instruction

This instruction has the syntax

joe outcome, loc_label

and specifies control transfer to a location label loc label if the outcome of last invoked user
or mixed-type instruction is equal to outcome. The event handler of an instruction meta-class
sets the number of outcomes of instructions belonging to an instruction class derived from the
instruction meta-class on initialization of this instruction class.

If the assembler expects a user or mixed-type instruction at a particular location but encoun-
ters a contiguous block of joe instructions at this location, the assembler implicitly inserts a
nop instruction before the contiguous block. Normally, the nop instruction does not change the
outcome of last invoked instruction. After assembling the nop instruction, the assembler treats
the contiguous block as a place of analysis of that outcome.

Chapter 5: Assembler Programs 184

5.3.5 stt Instruction

This instruction has the following forms:

stt

stt state_name

They are equivalent to the notation

stt [state_name]

The instruction marks the beginning of a state of an assembler program. The state biuniquely
corresponds to a state of a node with this assembler program loaded. Both states can have a name
specified by a (quoted) string literal state name. An assembler program must not contain states
with duplicate names. See Section 5.8 [Loading a Parsed Program into a Node], page 203, for
the description of qsmm_get_node_state_name and qsmm_get_node_state_by_name functions
retrieving the name of a node state by its index and retrieving the index of a node state by its
name.

The stt instruction chooses the action emission matrix to hold profile probabilities specified
by certain other instructions in an assembler program. Without the stt instruction, those other
instructions would specify profile probabilities held in the state transition matrix.

The action emission matrix can have the restriction to define only deterministic choices of
user and mixed-type instructions in all node states. In this case, all jprob and case instructions
in an assembler program specify profile probabilities held in the state transition matrix—if there
is no need to assign a name to a state, you can omit an stt instruction marking the beginning
of this state.

If the action emission matrix does not have the restriction to define only deterministic choices
of user and mixed-type instructions in all node states, omitting an stt instruction in an assembler
program causes an unprocessed instruction or a nop instruction implicitly inserted before the
unprocessed instruction to become the beginning of the next state. To prevent this undesired
behavior, the best practice is to specify stt instructions for all states in the assembler program
to know exactly where each state begins. To support this approach, the assembler can generate
a warning for every location where a state begins, but an stt instruction is missing there. Note
that inserting stt instructions into an assembler program may require rearranging the assembler
program.

There are three possible types of places where you can insert an stt instruction.

1. Before a user instruction or mixed-type instruction:

stt [state_name]

user or mixed-type instruction

This instruction arrangement means that in a state marked by the stt instruction the
instruction emitting engine emits a specified user or mixed-type instruction. The user or
mixed-type instruction must not have a location label assigned on condition that a jump
from elsewhere to this label exists.

As a result of assembling this instruction arrangement, the action emission matrix defines
deterministic choice of this user or mixed-type instruction in this state. The action emission
matrix contains profile probability 1 for this state and this user or mixed-type instruction
and profile probability 0 for this state and all other user and mixed-type instructions.

If you need to mark the beginning of a state, but there is no effective user or mixed-type
instruction to insert beneath the stt instruction, you may insert the nop or nop1 instruction
instead of such user or mixed-type instruction.

2. Before a block of jprob instructions:

Chapter 5: Assembler Programs 185

stt [state_name]

jprob prob1, L1

jprob prob2, L2

...

jprob probN, LN

user or mixed-type instruction 0

...

L1: user or mixed-type instruction 1

...

L2: user or mixed-type instruction 2

...

LN: user or mixed-type instruction N

...

This instruction arrangement means that in a state marked by the stt instruction the
instruction emitting engine emits one of specified user or mixed-type instructions. All those
user and mixed-type instructions must belong to different instruction classes, that is, have
different combinations of an instruction name and instruction parameters. None of jprob
instructions just after the stt instruction must have location labels assigned on condition
that jumps from elsewhere to these labels exist.

As a result of assembling this instruction arrangement, the action emission matrix contains
the profile probabilities of emitting all specified user or mixed-type instructions in the state
and contains profile probability 0 of emitting all other user and mixed-type instructions in
this state. However, in the general case, the profile probabilities of emitting the specified
user and mixed-type instructions are different from profile probabilities indicated in the
corresponding jprob instructions. For more information, see an example block of jprob
instructions in Section 5.3.2 [jprob Instruction], page 182.

3. Before a choice instruction block:

stt [state_name]

choice

case prob1, L1

case prob2, L2

...

case probN, LN

end choice

user or mixed-type instruction 0

...

L1: user or mixed-type instruction 1

...

L2: user or mixed-type instruction 2

...

LN: user or mixed-type instruction N

...

This instruction arrangement means that in a state marked by the stt instruction the
instruction emitting engine emits one of specified user or mixed-type instructions. All those
user and mixed-type instructions must belong to different instruction classes, that is, have
different combinations of an instruction name and instruction parameters. The choice

instruction after the stt instruction must not have a location label assigned on condition
that a jump from elsewhere to this label exists. Do not assign location labels to case

instructions in the choice instruction block.

Chapter 5: Assembler Programs 186

As a result of assembling this instruction arrangement, the action emission matrix contains
the profile probabilities of emitting all specified user or mixed-type instructions in the state
and contains profile probability 0 of emitting all other user and mixed-type instructions in
this state. The profile probabilities of emitting the specified user and mixed-type instruc-
tions excluding the profile probability of emitting a user or mixed-type instruction beneath
the choice instruction block are equal to profile probabilities indicated in the corresponding
case instructions.

Adhere to the following assembler program structure after every user or mixed-type instruc-
tion in the above three instruction arrangement schemes:

1. The locations of joe instruction blocks. A contiguous block of joe instructions can follow
a user or mixed-type instruction. Those joe instructions analyze the outcome of this user
or mixed-type instruction.

2. The jump targets of joe instructions. Every joe instruction specifies a (conditional) jump
to a contiguous block of jprob instructions or to a choice instruction block or to the
beginning of a state.

3. Instructions after a joe instruction block. One of these assembler text fragments follows a
contiguous block of joe instructions:

1. A contiguous block of jprob instructions.

2. A choice instruction block.

3. A jmp instruction transferring control to a state.

4. The beginning of another state.

4. Specifying state transition probabilities. A contiguous block of jprob instructions or a
choice instruction block with case instructions can be the jump target of a joe instruction
or can follow a contiguous block of joe instructions. Those jprob or case instructions
specify probabilities stored in the state transition matrix. The jump targets of those jprob
or case instructions are the beginnings of states.

5. What follows a specification of state transition probabilities. The beginning of a different
state or a jmp instruction transferring control to a state follows a contiguous block of jprob
instructions or a choice instruction block if they specify state transition probabilities.

The following example illustrates the described assembler program structure.

user or mixed-type instruction X

; A contiguous block of ‘joe’ instructions. They analyze the

; outcome of user or mixed-type instruction X.

;

; Each of L1, L2, ..., LN labels transfers control to the

; beginning of one of the following:

; - a contiguous block of ‘jprob’ instructions;

; - a ‘choice’ instruction block;

; - a state.

joe outcome1, L1

joe outcome2, L2

...

joe outcomeN, LN

joe outcomeN1, LN1 ; The conditional jump to a sample

; contiguous block of ‘jprob’

; instructions.

Chapter 5: Assembler Programs 187

joe outcomeN2, LN2 ; The conditional jump to a sample

; ‘choice’ instruction block.

; An optional contiguous block of ‘jprob’ instructions (can also be

; a ‘choice’ instruction block). They specify the probabilities of

; transitions to states for the source state, user or mixed-type

; instruction X emitted in that source state, and any outcome

; of user or mixed-type instruction X different from outcome1,

; outcome2, ..., outcomeN, outcomeN1, and outcomeN2.

;

; Labels SA1, SA2, ..., SAN, and SANN transfer control to the

; beginnings of states.

jprob probA1, SA1

jprob probA2, SA2

...

jprob probAN, SAN

jmp SANN

; A sample ‘choice’ instruction block. It specifies the

; probabilities of transitions to states for the source state, user

; or mixed-type instruction X emitted in that source state, and

; outcome outcomeN2 of user or mixed-type instruction X.

;

; Labels SB1, SB2, ..., SBN, and SBNN transfer control to the

; beginnings of states.

LN2: choice

case probB1, SB1

case probB2, SB2

...

case probBN, SBN

end choice

jmp SBNN

; A sample contiguous block of ‘jprob’ instructions. They specify

; the probabilities of transitions to states for the source state,

; user or mixed-type instruction X emitted in that source state,

; and outcome outcomeN1 of user or mixed-type instruction X.

;

; Labels SC1, SC2, ..., SCN, and SCNN transfer control to the

; beginnings of states.

LN1: jprob probC1, SC1

jprob probC2, SC2

...

jprob probCN, SCN

Chapter 5: Assembler Programs 188

jmp SCNN ; This instruction is not necessary

; if it specifies the jump to a

; state going just after this line.

; The beginning of another state.

After a user or mixed-type instruction there can be no joe instructions at all. In this case, one
of these assembler text fragments should immediately follow this user or mixed-type instruction:

1. A contiguous block of jprob instructions.

2. A choice instruction block.

3. A jmp instruction transferring control to a state.

4. The beginning of another state.

The following example illustrates this instruction arrangement.

user or mixed-type instruction Y

; An optional contiguous block of ‘jprob’ instructions (can also be

; a ‘choice’ instruction block). They specify the probabilities of

; transitions to states for the source state, user or mixed-type

; instruction Y emitted in that source state, and any possible

; outcome of user or mixed-type instruction Y.

;

; Labels S1, S2, ..., SN, and SNN transfer control to the

; beginnings of states.

jprob prob1, S1

jprob prob2, S2

...

jprob probN, SN

jmp SNN ; This instruction is not necessary

; if it specifies the jump to a

; state going just after this line.

; The beginning of another state.

Adherence to the described assembler program structure simplifies understanding how the
assembler converts an assembler program to a probability profile stored in the state transition
matrix and action emission matrix of a node. This understanding is necessary to develop an
assembler program for a node capable of efficient training.

5.3.6 nop and nop1 Instructions

The mixed-type instructions nop and nop1 should have the corresponding instruction meta-
classes registered for a multinode model.

The expected behavior of nop instruction is the absence of any effect except for the duplication
of outcome of the previous instruction invoked by a node. You can define the instruction meta-
class for the nop instruction by the following code block:

Chapter 5: Assembler Programs 189

static QSMM_INSTR_META_CLASS(nop) {

switch (qsmm_evt) {

case QSMM_EVT_INSTR_CLASS_INIT:

qsmm_set_eh_noutcome(qsmm,0);

break;

}

return 0;

}

The assembler can implicitly generate nop instructions while assembling a program and
produce warnings indicating the insertion locations of those instructions. Ideally, an assembler
program should not have implicitly generated nop instructions.

The mixed-type instruction nop1 should have single outcome 0 the instruction always returns.
Besides that, the instruction should not have any effect. You can define the instruction meta-
class of nop1 instruction by the following code block:

static QSMM_INSTR_META_CLASS(nop1) {

return 0;

}

You can insert a nop1 instruction after an stt instruction where it is not necessary to preserve
the outcome of the previous instruction invoked by a node. The use of nop1 instruction instead
of nop instruction reduces the number of profile probabilities written to the state transition
matrix making it simpler and decreasing the amount of memory needed to store the matrix.
The disassembler can generate the nop1 instruction at the beginning of an assembler program.

5.3.7 lookup Instruction

This instruction is a mixed-type instruction. The disassembler can generate lookup instructions
when disassembling a node of a multinode model with positive length of look-ahead signal
segment. The field ngram_env_la_sz of qsmm_desc_s structure passed to the function qsmm_

create specifies this length when creating the multinode model. The function qsmm_get_ngram_

env_la_sz fetches this length for an existing multinode model.

The instruction has the syntax

lookup position

and sets the outcome equal to a look-ahead signal at zero-based position in the look-ahead signal
segment.

The assembler does not support loading assembler programs into the nodes of a multinode
model with positive length of look-ahead signal segment. Therefore, if you need to assemble
a program (e.g. generated by the disassembler) containing lookup instructions, you do the
following:

1. Create a multinode model with zero-length look-ahead signal segment.

2. Register the instruction meta-class ‘lookup’.

3. Register instruction classes derived from the instruction meta-class ‘lookup’ for possible val-
ues of position. Instructions belonging to those instruction classes fetch signals at specified
positions from an array used as a substitute for the look-ahead signal segment.

4. Modify the elements of this array where you would modify the elements of look-ahead signal
segment.

5.3.8 abort Instruction

This instruction is a mixed-type instruction. The disassembler can generate it after a user
instruction or another mixed-type instruction when there is no information about instructions
following the user or mixed-type instruction. This is the case when the instruction emitting

Chapter 5: Assembler Programs 190

engine emitted the user or mixed-type instruction once and that instruction has not returned
control, or when the disassembler discarded subsequent instructions according to disassembling
parameters.

You can use the following approach to assemble programs generated by the disassembler
containing abort instructions. First, make the disassembler generate a single abort instruction
at the end of an assembler program by setting the field use_abort_1 of qsmm_disasm_desc_
s structure to a non-zero value. In this case, the assembler program contains jumps to this
abort instruction from other locations where the disassembler would insert abort instructions in
default mode. The disassembler additionally generates a jump to the beginning of this assembler
program beneath this abort instruction. Second, implement the abort instruction as the nop1
instruction (without any effect). After you have done these two things, the environment state
identification engine transfers control to the beginning of this assembler program when the next
instruction to execute is unknown. Such looping may be appropriate in your situation.

5.3.9 User Instructions

An assembler program can contain user instructions. They are application-specific and can
perform operations listed in Section 4.3.3 [Handling Instruction Invocation], page 152. User
instructions correspond to instruction classes in the instruction class set of a node containing
the assembler program. To find an instruction class for a user instruction, the assembler first
converts the parameters of this user instruction to canonical form according to the rules described
in Section 4.2.2.6 [Setting Text Instruction Parameters], page 119.

You can split the parameters of a user instruction into multiple lines at positions of commas
located outside of string literals. To indicate a continuation of instruction parameters on the
next line, finish the previous line just after a comma following an instruction parameter.

5.4 Disassembling a Node

You can convert the state transition matrix and action emission matrix of a node to an assembler
program—disassemble the node.

You typically disassemble a node after executing or training it. Before executing the node,
you can load into it an assembler program specifying a probability profile for the state transition
matrix and action emission matrix. To simplify the analysis of results of training the node, it
might be desirable to obtain a disassembled program which is an assembler program previously
loaded into the node, but with profile probabilities in jprob and case instructions changed to
probabilities learned while training the node. To turn on this mode—disassembling using an
assembler program template,—pass the QSMM_ASM_TEMPLATE flag to the function qsmm_node_

asm when loading an assembler program into a node you are going to disassemble later (see
Section 5.8 [Loading a Parsed Program into a Node], page 203). If a node does not have an
assembler program loaded, or the node has an assembler program loaded without specifying the
QSMM_ASM_TEMPLATE flag, you can only disassemble the node in classic mode.

Use the following function to disassemble a node.

[Function]int qsmm_node_disasm (qsmm t model, qsmm sig t node, struct
qsmm disasm desc s *desc_p, qsmm prg t *prg_p)

This function disassembles a node of a multinode model and stores the allocated handle of
a disassembled program in *prg p if prg p is not NULL. The argument node specifies the
identifier of this node. If desc p is not NULL, *desc p specifies disassembling parameters. If
desc p is NULL, the function uses default disassembling parameters.

If the function qsmm_node_asm previously assembled the node with the QSMM_ASM_TEMPLATE
flag, or the node uses a source probability profile provided by another node assembled with
the QSMM_ASM_TEMPLATE flag, the disassembled program is a template assembler program with

Chapter 5: Assembler Programs 191

replaced probabilities in jprob and case instructions. If desc p is not NULL, probabilities of
desc_p->prob_type type replace profile probabilities in those jprob and case instructions.
If desc p is NULL, probabilities of QSMM_PROB_AGGR type replace the profile probabilities.

In the current implementation, the function does not modify *desc p if desc p is not NULL.
However, in a future implementation, the function may modify *desc p, for example, to store
there statistics on the disassembling process.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_INVAL

The argument desc p is not NULL, and parameters in *desc p are invalid.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal
reported an error by returning NaN. The function qsmm_actor_calc_action_

prob calls the helper function.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the model instance in inconsistent state.

The description of a structure passed to the function qsmm_node_disasm is below.

[Structure]qsmm_disasm_desc_s
This structure specifies the parameters of disassembling. The structure contains the following
fields.

[Field]char use_stt_start
If not 0, generate an stt instruction at the beginning of an assembler program if it started
with a lookup instruction, and generate stt and nop1 instructions at the beginning of an
assembler program if it started with a jprob instruction or choice instruction block. The
default is not to generate. The disassembler ignores this field when disassembling a node
using an assembler program template.

[Field]char use_stt_state
If not 0, generate stt instructions at the beginnings of states. The default is not to
generate. The disassembler ignores this field when disassembling a node using an assembler
program template.

Chapter 5: Assembler Programs 192

[Field]char use_stt_lookup
If not 0, generate stt instructions before lookup instructions. The default is not to
generate. The disassembler ignores this field when disassembling a node using an assembler
program template.

[Field]char use_stt_abort
If not 0, generate stt instructions before abort instructions. This is not very useful
unless there is not more than one abort instruction in an assembler program (the field
use_abort_1 sets this mode). The default is not to generate. The disassembler ignores
this field when disassembling a node using an assembler program template.

[Field]char use_choice
If not 0, generate choice instruction blocks instead of contiguous blocks of jprob instruc-
tions when the number of jprob instructions in a block is greater than one. The default
is to generate. The disassembler ignores this field when disassembling a node using an
assembler program template.

[Field]char use_abort_1
If is 0, and there is no information what to execute after a user or mixed-type instruction,
generate an abort instruction after the user or mixed-type instruction. If not 0, generate
a jump after this user or mixed-type instruction to a single abort instruction at the end
of an assembler program and generate a jump to the start of this assembler program
after this abort instruction. If not 0, and there are no jumps to the abort instruction
at the program end, skip generating that abort instruction followed by a jump to the
program start. The default is to generate an abort instruction after a user or mixed-
type instruction. The disassembler ignores this field when disassembling a node using an
assembler program template.

[Field]char do_retain_goto_1
If not 0, retain the most probable transition to a target state for every quadruple con-
sisting of a source state, a user or mixed-type instruction emitted in the source state, the
outcome of this instruction, and the content of look-ahead signal segment when discarding
transitions with probabilities less than specified in the field prob_goto_min. This retain-
ing ensures that for every quadruple there remains at least one transition to a target state.
The field prob_type specifies the type of analyzed probabilities. The default is not to re-
tain the most probable transition. The disassembler ignores this field when disassembling
a node using an assembler program template.

[Field]char do_retain_action_1
If not 0, retain the most probable user or mixed-type instruction emittable in every
state when discarding instructions with probabilities less than specified in the field prob_

action_min. This retaining ensures that for every state there remains at least one emit-
table user or mixed-type instruction—the disassembler will not remove a state because the
state is without emittable user and mixed-type instructions. The field prob_type specifies
the type of analyzed probabilities. The default is not to retain the most probable user
or mixed-type instruction. The disassembler ignores this field when disassembling a node
using an assembler program template.

[Field]char do_calc_prob[QSMM_PROB_COUNT]
An array specifying additional types of probabilities to calculate for jprob and case

instructions optionally printed in comments for those instructions. The indices of this
array are the elements of qsmm_prob_e enumeration (except for its last element) described
in Section 2.5.4 [Emitting an Output Signal], page 41. If an element of this array is non-
zero, the disassembler calculates probabilities of a corresponding type and stores them in

Chapter 5: Assembler Programs 193

the instructions. The disassembler calculates probabilities of a type specified in the field
prob_type regardless of do_calc_prob field. The default is not to calculate probabilities
of additional types.

[Field]long fq_goto_min
The minimum frequency of a transition to a target state for a quadruple consisting of a
source state, a user or mixed-type instruction emitted in the source state, the outcome of
this instruction, and the content of look-ahead signal segment. The disassembler discards
transitions performed lesser numbers of times. The default minimum frequency is 0. The
disassembler ignores this field when disassembling a node using an assembler program
template.

[Field]long fq_action_min
The minimum frequency of emitting a user or mixed-type instruction in a state. The
disassembler discards instructions emitted lesser numbers of times. The default minimum
frequency is 0. The disassembler ignores this field when disassembling a node using an
assembler program template.

[Field]double prob_goto_min
When disassembling a node using an assembler program template, this field specifies a
minimum probability for jprob and case instructions corresponding to the state transi-
tion matrix. The disassembler removes instructions containing lesser probabilities from a
disassembled program, although those instructions were in the assembler program tem-
plate.

When disassembling a node without using an assembler program template, this field spec-
ifies the minimum probability of a transition to a target state for a quadruple consisting
of a source state, a user or mixed-type instruction emitted in the source state, the out-
come of this instruction, and the content of look-ahead signal segment. The disassembler
discards transitions with lesser probabilities after discarding transitions with frequencies
less than a frequency specified in the field fq_goto_min and after renormalizing transition
probabilities. When discarding transitions with lesser probabilities, if do_retain_goto_1
is not 0, the disassembler retains most probable transitions.

The field prob_type specifies the type of analyzed probabilities. The default minimum
probability is 0.

[Field]double prob_action_min
When disassembling a node using an assembler program template, this field specifies a
minimum probability for jprob and case instructions corresponding to the action emis-
sion matrix. The disassembler removes instructions containing lesser probabilities from a
disassembled program, although those instructions were in the assembler program tem-
plate.

When disassembling a node without using an assembler program template, this field spec-
ifies the minimum probability of emitting a user or mixed-type instruction in a state. The
disassembler discards instructions with lesser emitting probabilities after discarding in-
structions with frequencies less than a frequency specified in the field fq_action_min and
after renormalizing emitting probabilities. When discarding instructions with lesser emit-
ting probabilities, if do_retain_action_1 is not 0, the disassembler retains most probable
instructions.

The field prob_type specifies the type of analyzed probabilities. The default minimum
probability is 0.

[Field]enum qsmm_prob_e prob_type
The type of probabilities to calculate for jprob and case instructions.

Chapter 5: Assembler Programs 194

When disassembling a node using an assembler program template, the disassembler com-
pares those probabilities with probabilities in the fields prob_goto_min and prob_action_

min to determine whether to discard specific jprob and case instructions.

When disassembling a node without using an assembler program template, this field spec-
ifies the type of probabilities for sorting jprob and case instructions in descending order
within corresponding instruction blocks. This field also specifies the type of state transi-
tion probabilities and instruction emission probabilities for comparing with probabilities
in the fields prob_goto_min and prob_action_min.

See Section 2.5.4 [Emitting an Output Signal], page 41, for the description of elements of
qsmm_prob_e enumeration. The default type of probabilities is QSMM_PROB_AGGR.

Zero by the function memset an instance of qsmm_disasm_desc_s structure before setting
the fields of this instance passed to the function qsmm_node_disasm.

When disassembling a node without using an assembler program template, the disassembler
generates the following comments for instructions in a disassembled program:

• At the beginnings of states: the index of a state and the number of transfers of control to
the state.

• For user and mixed-type instructions: the number of instruction invocations (calls).

• For jmp, joe, jprob, and case instructions: the number of jumps performed.

Note the following regarding the frequencies that include the numbers of transfers of control
to states, the numbers of instruction invocations, and the numbers of jumps performed:

• The disassembler does not include frequencies less than 2 in comments.

• Frequencies printed in comments may be inconsistent among themselves if the disassembler
discarded some instructions according to disassembling parameters.

To generate the most probable completely deterministic program when disassembling a node
without using an assembler program template, set to 1 the fields prob_goto_min, prob_action_
min, do_retain_goto_1, and do_retain_action_1 of qsmm_disasm_desc_s structure.

Below there is an example of calling the function qsmm_node_disasm to generate a program
for subsequent assembling. A disassembled node does not have an assembler program loaded.

qsmm_prg_t prg=0;

struct qsmm_disasm_desc_s disasm_desc;

memset(&disasm_desc,0,sizeof(disasm_desc));

// Insert ‘stt’ instructions at appropriate places.

disasm_desc.use_stt_start=1;

disasm_desc.use_stt_state=1;

disasm_desc.use_stt_lookup=1;

disasm_desc.use_stt_abort=1;

// Improve the readability of probabilistic jumps.

disasm_desc.use_choice=1;

// Simplify handling unexplored control paths.

disasm_desc.use_abort_1=1;

// Do not generate never executed code.

disasm_desc.fq_goto_min=1;

disasm_desc.fq_action_min=1;

// Do not generate probabilistic jumps for

// rounded probabilities less than 1%.

disasm_desc.prob_goto_min=0.005;

disasm_desc.prob_action_min=0.005;

qsmm_node_disasm(qsmm,node,&disasm_desc,&prg);

Chapter 5: Assembler Programs 195

An example of calling the function qsmm_node_disasm for a node assembled with the QSMM_
ASM_TEMPLATE flag occupies a lesser number of lines because the disassembler uses a small subset
of fields of qsmm_disasm_desc_s structure in this mode.

qsmm_prg_t prg=0;

struct qsmm_disasm_desc_s disasm_desc;

memset(&disasm_desc,0,sizeof(disasm_desc));

// Remove ‘jprob’ and ‘case’ instructions with

// rounded probabilities less than 1%.

disasm_desc.prob_goto_min=0.005;

disasm_desc.prob_action_min=0.005;

qsmm_node_disasm(qsmm,node,&disasm_desc,&prg);

Refer to the files tests/disasm2.c and tests/lookup2.c for the methods of assembling a
previously disassembled program.

5.5 Inspecting an Assembler Program

Use the following function to get the number of instructions contained in an assembler program.

[Function]int qsmm_get_prg_ninstr (qsmm prg t prg)
This function returns the number of instructions contained in a program prg. A returned
value is always non-negative.

Use the following function to get an instruction contained in an assembler program.

[Function]qsmm_instr_t qsmm_get_prg_instr (qsmm prg t prg, int instr_idx)
This function returns an instruction contained in a program prg at zero-based index instr idx.

If instr idx is negative or greater than or equal to the number of instructions in the program,
the function returns NULL.

The following enumeration specifies the type of an assembler instruction.

[Enumeration]qsmm_instr_e
This enumeration represents the type of an assembler instruction. The enumeration contains
the following elements.

QSMM_INSTR_USER

A user or mixed-type instruction.

QSMM_INSTR_JMP

A jmp instruction.

QSMM_INSTR_JPROB

A jprob instruction.

QSMM_INSTR_CASE

A case instruction (in a choice instruction block).

QSMM_INSTR_CHOICE

A choice instruction.

QSMM_INSTR_JOE

A joe instruction.

QSMM_INSTR_STT

An stt instruction.

QSMM_INSTR_END

An end choice instruction (at the end of a choice instruction block).

Chapter 5: Assembler Programs 196

Use the following function to get the type of an assembler instruction.

[Function]enum qsmm_instr_e qsmm_get_instr_type (qsmm instr t instr)
This function returns the type of an instruction instr.

The function qsmm_get_prg_instr does not return instructions with the types QSMM_INSTR_
CASE and QSMM_INSTR_END. Instead, it can return an instruction with the type QSMM_INSTR_

CHOICE representing a choice instruction block containing nested case instructions and a nested
end choice instruction. Use the following function to get the number of instructions nested in
a choice instruction block.

[Function]size_t qsmm_get_instr_nnested (qsmm instr t instr)
This function returns the number of instructions nested in an instruction instr with the type
QSMM_INSTR_CHOICE. For instructions with other types, the function returns 0.

Use the following function to get a nested case or end choice instruction.

[Function]qsmm_instr_t qsmm_get_instr_nested (qsmm instr t instr, size t
nested_idx)

This function returns an instruction nested in an instruction instr with the type QSMM_INSTR_
CHOICE. The argument nested idx specifies zero-based index of a nested instruction.

If the instruction instr does not have the type QSMM_INSTR_CHOICE, or nested idx is greater
than or equal to the number of instructions nested in the instruction instr, the function
returns NULL.

An instruction can have location labels placed to the left of this instruction or before it. You
can use a location label assigned to a choice instruction block to refer to an output probabilities
array containing elements corresponding to case instructions in the block (see Section 5.9.4
[Output Arrays], page 219). Use the following function to get the number of location labels
assigned to an instruction.

[Function]size_t qsmm_get_instr_nlabel (qsmm instr t instr)
This function returns the number of location labels assigned to an instruction instr normally
placed to the left of this instruction or before it.

Use the following function to get a location label by its index.

[Function]const char * qsmm_get_instr_label (qsmm instr t instr, size t
label_idx)

This function returns a location label at zero-based index label idx assigned to an instruction
instr. If label idx is greater than or equal to the number of location labels assigned to the
instruction, the function returns NULL.

5.6 Printing an Assembler Program

Use the following function to get a string representation of an assembler instruction.

[Function]int qsmm_instr_str (char *bufp, size t bufsz, qsmm instr t instr,
struct qsmm dump instr desc s *desc_p)

This function stores in a buffer bufp with size bufsz bytes a string representation of an
instruction instr. If desc p is not NULL, the function generates the string representation
according to parameters in *desc p. If desc p is NULL, the function generates the string
representation according to default parameters. The function may change either *desc p or
those default parameters.

On success, the function returns a non-negative number of bytes required to store the string
representation not counting finalizing byte 0. If bufsz is less than INT_MAX, a returned value

Chapter 5: Assembler Programs 197

greater than or equal to bufsz indicates the truncation of a string representation. In this case,
if bufsz is positive, the function stores in bufp a truncated string representation with length
bufsz–1 bytes and terminates a stored string with byte 0. The function supports passing 0
for both bufp and bufsz to determine the length of a string representation.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_INVAL

The argument bufsz is positive, but bufp is NULL.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The QSMM library contains an instance of qsmm_dump_instr_desc_s structure holding the
default parameters of generating string representations of assembler instructions. Use the fol-
lowing function to get a pointer to this instance.

[Function]struct qsmm_dump_instr_desc_s *
qsmm_get_default_dump_instr_desc ()

This function returns a pointer to the default parameters of generating string representations
of assembler instructions. You can change those parameters via this pointer. The function
never returns NULL.

The description of a structure specifying the parameters of generating string representations
of instructions is below.

[Structure]qsmm_dump_instr_desc_s
This structure specifies the parameters of generating a string representation of an assembler
instruction. The structure contains the following fields.

[Field]char is_line_after_comment_above
If this field is not 0, the field do_print_comment_above is not 0, and the instruction has a
comment above itself, insert an empty line after the comment and before the instruction.
The function qsmm_prg_dump uses this field in a similar way to determine whether to
insert an empty line after a comment preceding a definition of a probability variable. The
default is to insert an empty line.

[Field]char is_line_after_multiline_comment_right
If this field is not 0, and the field do_print_comment_right is not 0, insert an empty
line after an instruction with a multi-line comment to the right or after a definition of a
probability variable with a multi-line comment to the right if the next line in the assembler
program contains a comment to the right. If an instruction name or instruction parameters
are too long, the function qsmm_instr_str may put this multi-line comment below the
instruction. The default is to insert an empty line.

[Field]char is_space_after_comma
If not 0, insert a space after every comma outside string literals in instruction parameters.
The default is to insert a space.

[Field]char do_print_label
If not 0 and the instruction has a location label assigned, print the location label to the
left of the instruction. If the instruction has multiple location labels assigned, print all

Chapter 5: Assembler Programs 198

those labels except for the last one on separate lines. If there is no room between the last
label and an instruction name, print the last label on a separate line too. The default is
to print location labels.

[Field]char do_print_name
If not 0, print an instruction name. The default is to print.

[Field]char do_print_param
If not 0, print instruction parameters. The default is to print.

[Field]char do_print_comment_above
If not 0 and the instruction has a comment above itself, print this comment. The function
qsmm_prg_dump uses this field in a similar way to determine whether to print comments
above the definitions of probability variables. The default is to print the comments.

[Field]char do_print_comment_right
If not 0 and the instruction has a comment to the right, print this comment. The function
qsmm_prg_dump uses this field in a similar way to determine whether to print comments
to the right of definitions of probability variables. The default is to print the comments.

[Field]char do_print_comment_below
[New in QSMM 1.17] If not 0, the instruction has a comment to the right, and an instruction
name or instruction parameters are too long, put this comment below the instruction.
The function qsmm_instr_str considers the instruction name or parameters too long if
the comment to the right is going to start at a column greater than specified in the
field col_comment, and that field is positive. The function qsmm_instr_str indents the
comment below the instruction at column col_comment. The default is not to move below
an instruction a comment to the right of this instruction.

Warning: QSMM 1.18 does not correctly assign the comments below instruc-
tions to these instructions while parsing an assembler program.

[Field]char do_print_var
If not 0, a jprob or case instruction uses the name of a probability variable, and the field
prob_type is equal to QSMM_PROB_PROFILE, print that name in the instruction. Otherwise,
print a probability. The default is to print the names of probability variables when possible.

[Field]char do_print_state_name
If this field is not 0, the field do_print_param is not 0, and an stt instruction has a state
name, print the state name in the instruction. The default is to print state names.

[Field]char do_print_prob[QSMM_PROB_COUNT]
An array specifying additional types of probabilities to print in a comment for a jprob or
case instruction to the right. If an instruction name or instruction parameters are too long,
the function qsmm_instr_str may put this comment below the instruction. The indices
of this array are the elements of qsmm_prob_e enumeration (except for its last element)
described in Section 2.5.4 [Emitting an Output Signal], page 41. If the field do_print_

comment_right is not 0, an element of this array is not 0, and the index of this element is
not equal to the field prob_type, qsmm_instr_str prints a probability of a corresponding
type in the comment. When printing an instruction of a program disassembled using an
assembler program template, if the instruction has ambiguous context in the template,
qsmm_instr_str prints ‘?’ for the probabilities in the comment. The default is not to
print probabilities in the comments.

Chapter 5: Assembler Programs 199

[Field]int prob_prec
The number of digits after the decimal point to print for a probability in a jprob or case
instruction according to the field prob_type and for probabilities in a comment to the
right of this instruction according to the field do_print_prob. If an instruction name or
instruction parameters are too long, the function qsmm_instr_str may put this comment
below the instruction. The field prob_prec also specifies the number of digits after the
decimal point printed by the function qsmm_prg_dump for probabilities in the definitions
of probability variables. If this field is non-negative, use fixed-point notation. If this field
is negative, use exponential notation with the number of digits after the decimal point
equal to the absolute value of this field. The default number of digits to print after the
decimal point is 2.

[Field]long col_name
If this field is positive, it specifies alignment column for an instruction name. If this field
is not positive, do not align the instruction name. This field also specifies a column for
the function qsmm_prg_dump to indent ‘.data’ and ‘.code’ directives, comments above
instructions and above the definitions of probability variables, and a tail comment in an
assembler program. If this field is not positive, do not indent ‘.data’ and ‘.code’ directives
and the comments (start them at column 1). The default alignment column is 9.

[Field]long col_param
If this field is positive, it specifies alignment column for instruction parameters and, if
the parameters occupy multiple lines, a column to indent them on the following lines. If
this field is not positive, do not align or indent the instruction parameters. The default
alignment column is 17.

[Field]long col_comment
If this field is positive, it specifies alignment column for a comment to the right of an
instruction. If an instruction name or instruction parameters are too long, the function
qsmm_instr_str may put this comment below the instruction. If this field is not positive,
do not align the comment. The default alignment column is 33.

[Field]long margin_right
If this field is positive, it specifies a right margin column for comments. The functions
qsmm_instr_str and qsmm_prg_dump split longer comments into multiple lines. If this
field is not positive, do not split comments into multiple lines based on a right margin
column. The default is not to split.

[Field]long margin_right_param
If this field is positive, it specifies a right margin column for the parameters of a user
instruction. The function qsmm_instr_str splits long parameters into multiple lines and
uses the positions of commas outside string literals as allowed split positions. If this field
is not positive, do not split the parameters into multiple lines based on a right margin
column. The default right margin column is 30.

[Field]long nline_comment_right
Output parameter. The function qsmm_instr_str stores here the number of lines in a
comment to the right of an instruction. If an instruction name or instruction parameters
are too long, qsmm_instr_str may put this comment below the instruction. If the field
do_print_comment_right is 0, the instruction does not have the comment, or it occupies
the number of lines less than the number of lines occupied by instruction parameters,
qsmm_instr_str stores 0 here. If do_print_comment_right is not 0, the instruction has
this comment possibly split into multiple lines according to the field margin_right, and
the number of lines occupied by the comment is greater than or equal to the number of

Chapter 5: Assembler Programs 200

lines occupied by the instruction parameters, qsmm_instr_str stores a positive value here.
The function qsmm_prg_dump reads this field to insert an empty line after an instruction
with a multi-line comment to the right if the next instruction has a comment to the right.

[Field]long nline_param
Output parameter. The function qsmm_instr_str stores here the number of printed lines
of instruction parameters. The function qsmm_prg_dump reads this field to determine
whether to insert empty lines around multi-line instructions.

[Field]size_t out_sz
Output parameter. [New in QSMM 1.17] The number of bytes occupied by a string rep-
resentation printed by the function qsmm_instr_str not counting finalizing byte 0. That
number does not depend on buffer size passed to qsmm_instr_str.

[Field]enum qsmm_prob_e prob_type
The type of a probability to print in a jprob or case instruction. See Section 2.5.4
[Emitting an Output Signal], page 41, for the description of elements of qsmm_prob_e
enumeration. When printing an instruction of a program disassembled using an assembler
program template, if the instruction has ambiguous context in the template, the function
qsmm_instr_str prints ‘?’ for the probability. The default type of probabilities is QSMM_
PROB_AGGR.

Note: when converting a disassembled program or its specific instructions to a
string representation, be sure to set the fields do_print_prob and prob_type of
qsmm_dump_instr_desc_s structure to values consistent with the fields do_calc_

prob and prob_type of qsmm_disasm_desc_s structure used when disassembling
the program. Otherwise, the function qsmm_instr_str or qsmm_prg_dump may
print zero probabilities.

Use the following function to dump a program to a stream.

[Function]int qsmm_prg_dump (qsmm prg t prg, struct qsmm dump prg desc s
*desc_p, FILE *filep)

This function dumps a program prg to a stream filep. If desc p is not NULL, the function
dumps the program according to parameters in *desc p. If desc p is NULL, the function
dumps the program according to default parameters.

In the current implementation, the function does not modify *desc p or those default param-
eters. However, in a future implementation, the function may modify them, for example, to
store there statistics on the dumping process.

This function calls the function qsmm_instr_str to obtain string representations of individual
assembler instructions and passes to the latter function the field dump_instr_desc_p of qsmm_
dump_prg_desc_s structure as the parameters of generating those string representations.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The QSMM library contains an instance of qsmm_dump_prg_desc_s structure holding the
default parameters of dumping a program. Use the following function to get a pointer to this
instance.

Chapter 5: Assembler Programs 201

[Function]struct qsmm_dump_prg_desc_s * qsmm_get_default_dump_prg_desc
()

This function returns a pointer to the default parameters of dumping an assembler program.
You can change those parameters via this pointer. The function never returns NULL.

The description of a structure specifying the parameters of dumping a program is below.

[Structure]qsmm_dump_prg_desc_s
This structure specifies the parameters of dumping an assembler program. The structure
contains the following fields.

[Field]char do_print_vars
If not 0 and the program contains the definitions of probability variables, dump a “data”
section with those definitions. The default is to dump.

[Field]char is_line_before_label
If not 0, insert an empty line before a line with a location label definition. If an instruction
has multiple location labels assigned (dumped on separate lines), the function qsmm_prg_

dump inserts an empty line only before a line with the first location label definition. The
default is to insert.

[Field]char is_line_before_isolated_comment
If not 0, insert an empty line before a comment above an instruction or the definition of
a probability variable, and insert an empty line before a comment at the program end if
the field do_print_comment_tail is not 0. The default is to insert.

[Field]char are_lines_around_choice
If not 0, insert empty lines before and after choice instruction blocks. The default is to
insert.

[Field]char are_lines_around_multiline_param
If not 0, insert empty lines before and after multi-line user instructions. The default is to
insert.

[Field]char do_print_comment_tail
If not 0 and the program contains a comment at its end, dump this comment. The default
is to dump.

[Field]int col_var_type
If this field is positive, it specifies alignment column for ‘prob’ keywords. If this field is
not positive, do not align those keywords. The default alignment column is 17.

[Field]int col_var_val
If this field is positive, it specifies alignment column for the values of probability variables.
If this field is not positive, do not align those values. The default alignment column is 25.

[Field]int col_var_comment
If this field is positive, it specifies alignment column for comments to the right of definitions
of probability variables. If this field is not positive, do not align those comments. The
default alignment column is 33.

[Field]struct qsmm_dump_instr_desc_s * dump_instr_desc_p
If this field is not NULL, it specifies the parameters of dumping assembler instructions by the
function qsmm_instr_str. If this field is NULL, qsmm_instr_str uses default parameters
returned by the function qsmm_get_default_dump_instr_desc.

Chapter 5: Assembler Programs 202

5.7 Parsing an Assembler Program

QSMM supports parsing an assembler program provided in an input stream, string buffer, or
file. The result of this parsing is a memory representation of this assembler program you can
inspect, print, or load into a node.

[Function]int qsmm_parse_asm_source_buf (const char *in_p, const char *cwd_p,
unsigned int flags, void *rez1, void *rez2, qsmm msglist t msglist,
qsmm prg t *prg_p)

[Function]int qsmm_parse_asm_source_stream (FILE *filep, const char *cwd_p,
unsigned int flags, void *rez1, void *rez2, qsmm msglist t msglist,
qsmm prg t *prg_p)

The function qsmm_parse_asm_source_buf parses an assembler program with source text in
a string in p. The function qsmm_parse_asm_source_stream parses an assembler program
with source text read from a stream filep. Both functions store the allocated handle of a
parsed program in *prg p. The arguments rez1 and rez2 are for future use and must be
equal to 0.

If msglist is not NULL, the functions add to a message list msglist error, warning, and note
messages generated while parsing the source text. If flags has a bit specified by the mask
QSMM_PARSE_ASM_PREPROCESS set, the functions first preprocess the source text by the assem-
bler preprocessor. If cwd p is not NULL, the preprocessor uses cwd p as the name of a current
working directory when resolving ‘include’ directives. If cwd p is NULL, the preprocessor
uses an actual current working directory when resolving ‘include’ directives.

The functions return a non-negative value on success or a negative error code on failure.
Currently, the functions can return the following error codes.

QSMM_ERR_INVAL

The argument prg p is NULL.

QSMM_ERR_PRG

The source program text has at least one error. Ifmsglist is not NULL, the message
list msglist contains at least one error message.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale, including the inability to convert the source program text to a
wide string.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_parse_asm_source_file (const char *fln, unsigned int
flags, void *rez1, void *rez2, qsmm msglist t msglist, qsmm prg t
*prg_p)

This function parses an assembler program with source text in a file fln. The function stores
the allocated handle of a parsed program in *prg p. If msglist is not NULL, the function adds
to a message list msglist error, warning, and note messages generated while parsing the source
text. If flags has a bit specified by the mask QSMM_PARSE_ASM_PREPROCESS set, the function
first preprocesses the source text by the assembler preprocessor. The arguments rez1 and
rez2 are for future use and must be equal to 0.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument prg p is NULL.

Chapter 5: Assembler Programs 203

QSMM_ERR_LIBC

The operating system reported a file access error. The variable errno holds the
error code.

QSMM_ERR_PRG

The source program text has at least one error. Ifmsglist is not NULL, the message
list msglist contains at least one error message.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale, including the inability to convert the source program text to a
wide string.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

See Section 6.3.2 [Creating a Message List], page 254, for the description of a function for
creating an empty message list for passing it to the functions parsing an assembler program
and the description of a function for destroying the message list afterwards. See Section 6.3.4
[Printing Messages], page 256, for the description of a function for dumping to a stream the
message list possibly filled with error, warning, and note messages generated while parsing the
assembler program.

5.8 Loading a Parsed Program into a Node

An assembler program specifies a probability profile loadable into the nodes of a multinode
model. Assembling a node is loading into it a probability profile specified by a memory repre-
sentation of an assembler program. The instruction class set of this node contains instruction
classes for all user and mixed-type instructions used in the assembler program. The assem-
bler supports loading assembler programs into the nodes of a multinode model with zero-length
look-ahead signal segment only.

Warning: if the environment state identification engine is a small actor (the field is_

large_env of qsmm_desc_s structure passed to the function qsmm_create is zero),
and it uses a built-in function for computing the relative probability of an output
signal, the adaptive behavior of assembler programs specifying nondeterministic
state transitions is generally ill-defined. Similarly, if the instruction emitting engine
is a small actor (the field is_large_opt of qsmm_desc_s is zero), and it uses a
built-in function for computing the relative probability of an output signal, the
adaptive behavior of assembler programs specifying nondeterministic instruction
emissions is also generally ill-defined. Therefore, tend to using large actors for
the environment state identification engine and instruction emitting engine in these
cases. The behavior is ill-defined, because profile probabilities act as output signal
weights, and the explanation in Section 2.6.5 [Number of Output Signals], page 55,
applies.

The functions qsmm_node_asm and qsmm_get_prg_nstate_v2 described further on in this
section take the argument flags specifying the modes of processing a memory representation of
an assembler program. That argument is a bitmask defined as a subset of macros described
below merged by bitwise “or.”

[Macro]QSMM_ASM_DETERM_OPT
Impose the following restriction on a probability profile for the action emission matrix: for
every node state, the probability profile must define deterministic choice of an instruction
class emitted in the node state. Setting the field is_determ_opt of qsmm_desc_s structure
to a non-zero value when creating a multinode model also turns on this mode but for all

Chapter 5: Assembler Programs 204

nodes in the multinode model. In this mode, the assembler considers that states begin just
before user and mixed-type instructions, and there is no need to mark unnamed states by
stt instructions. If you use stt instructions in this mode, you cannot place them just before
jprob instructions and choice instruction blocks.

[Macro]QSMM_ASM_TEMPLATE
Store the memory representation of an assembler program in the node as a template. The
function qsmm_node_disasm automatically uses the template when disassembling the node:
a disassembled program is the template program with profile probabilities in jprob and case

instructions replaced with probabilities that have a type specified in the field prob_type of
qsmm_disasm_desc_s structure passed to qsmm_node_disasm or the type QSMM_PROB_AGGR

when using default disassembling parameters. The field prob_goto_min of qsmm_disasm_
desc_s specifies a minimum probability in jprob and case instructions corresponding to
the state transition matrix. The field prob_action_min of qsmm_disasm_desc_s specifies a
minimum probability in jprob and case instructions corresponding to the action emission
matrix. The disassembler removes jprob and case instructions containing lesser probabilities
from the disassembled program, although those instructions were in the template program.
The disassembler can calculate additional probabilities with types specified by the field do_

calc_prob of qsmm_disasm_desc_s for subsequent adding to comments for jprob and case

instructions.

[Macro]QSMM_ASM_VAR_OUT
Collect information on output probability variables and output probabilities arrays in the
assembler program. You use them to fetch probabilities learned while executing or training
the node. Output probability variables contain probabilities for jprob and case instruc-
tions. Output probabilities arrays contain probabilities for choice instruction blocks. See
Section 5.9.3 [Output Variables], page 213, and Section 5.9.4 [Output Arrays], page 219, for
more information.

[Macro]QSMM_ASM_VAR_AUX
Allow using auxiliary probability variables in the assembler program. Those variables act as
constants and are neither controlled nor output variables. The disassembler merely replaces
the occurrences of auxiliary probability variables in jprob and case instructions with the
values of those variables specified by ‘prob’ keywords. See Section 5.9.5 [Auxiliary Variables],
page 224, for more information.

Use the following function to load a parsed assembler program into a node.

[Function]int qsmm_node_asm (qsmm t model, qsmm sig t node, unsigned int
flags, qsmm prg t prg, qsmm msglist t msglist)

This function assembles a node of a multinode model—loads a probability profile specified
by a program prg into the node. The argument node specifies the identifier of this node.
The argument flags specifies assembling modes (see above for the description of macros
corresponding to the bits of this bitmask taken into account). If msglist is not NULL, the
function adds to a message list msglist warning messages generated while assembling.

The function clears event history statistics collected for the node. If the node already has a
probability profile loaded, the function first unloads the profile. To clear the event history
statistics and unload the profile, this function calls the function qsmm_node_unload.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

Chapter 5: Assembler Programs 205

QSMM_ERR_PRG

The program prg has an error. If the multinode model has an error handler
assigned, it receives a message list with at least one error message.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_PROFSRCP

The node is a probability profile source for other nodes. See Section 5.11 [Memory
Efficient Cloning the Probability Profile], page 226, for more information on this
mode.

QSMM_ERR_NOSTATE

The node does not have enough states.

QSMM_ERR_MPROF

No room in the pool of probabilities lists in normal form for a large actor repre-
senting the environment state identification engine or instruction emitting engine.
The fields profile_pool_env_sz and profile_pool_opt_sz of qsmm_desc_s

structure passed to the function qsmm_create specify the sizes of those pools.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_MPROF, QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_

ERR_NOMEM can leave the probability profile of this node in inconsistent state. If after removing
a reason of this error a repeated call to this function succeeds, the probability profile becomes
consistent.

In the current implementation, to load an assembler program into a node, it must have a
sufficient number of states. Otherwise, the function qsmm_node_asm reports QSMM_ERR_NOSTATE.
The function qsmm_set_node_nstate can set the number of states of a node. That number may
not exceed the maximum number of states specified by the function qsmm_set_nstate_max for
the instruction class set of this node. Use the following function to determine the number of
states for passing to qsmm_set_node_nstate and qsmm_set_nstate_max.

[Function]int qsmm_get_prg_nstate_v2 (qsmm t model, const char
*instr_class_set_name, int rez1, unsigned int flags, qsmm prg t prg,
qsmm msglist t msglist, qsmm sig t *nstate_p)

This function calculates the minimum number of states required for nodes of a multinode
model to load a program prg into them. The argument instr class set name specifies the
name of instruction class set of those nodes. If msglist is not NULL, the function adds to a
message list msglist warning messages generated during the calculation.

Chapter 5: Assembler Programs 206

The argument flags specifies assembling modes (see the beginning of this section for the
description of macros corresponding to the bits of this bitmask taken into account). Addi-
tionally, flags can contain bitmask QSMM_EXCEPT_NOTFOUND or QSMM_EXCEPT_TYPE (or QSMM_
EXCEPT_ALL including both of them). If flags contain bitmask QSMM_EXCEPT_NOTFOUND, and
the instruction class set does not exist, the function reports QSMM_ERR_NOTFOUND. If flags
contain bitmask QSMM_EXCEPT_TYPE, and an entity named instr class set name is not an in-
struction class set, the function reports QSMM_ERR_TYPE. For certainty, the argument flags
passed to this function should be equal to the argument flags passed to the function qsmm_

node_asm when loading the program prg into particular nodes of this model.

On success, the function returns a non-negative value and sets *nstate p if nstate p is not
NULL. If an entity named instr class set name exists and is an instruction class set, the
function sets *nstate p to a calculated number of states. If the entity does not exist, and
flags does not contain QSMM_EXCEPT_NOTFOUND, the function sets *nstate p to QSMM_SIG_

INVALID. If the entity exists but is not an instruction class set, and flags does not contain
QSMM_EXCEPT_TYPE, the function sets *nstate p to QSMM_SIG_INVALID.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist. The function re-
ports this error if flags include bitmask QSMM_EXCEPT_NOTFOUND. Otherwise, the
function sets *nstate p to QSMM_SIG_INVALID (if nstate p is not NULL) and re-
turns 0.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class. The function reports this error if flags include
bitmask QSMM_EXCEPT_TYPE. Otherwise, the function sets *nstate p to QSMM_

SIG_INVALID (if nstate p is not NULL) and returns 0.

QSMM_ERR_PRG

The program prg has an error. If the multinode model has an error handler
assigned, it receives a message list with at least one error message.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The functions qsmm_node_asm and qsmm_get_prg_nstate_v2 can generate the following
warning messages.

‘nop’ instruction inserted
The assembler inserted a nop instruction at the beginning of an implicitly defined
state because the state does not start with a user or mixed-type instruction.

‘stt’ instruction expected
The assembler expects the beginning of a state in the assembler program, but there
is no stt instruction at that place. The assembler defines the state implicitly. If the
place has the definitions of location labels, the assembler may expect the beginning
of a state at that place based on the structure of assembler program fragments con-
taining jumps to those location labels. The assembler does not generate this warning

Chapter 5: Assembler Programs 207

if the field is_determ_opt of qsmm_desc_s structure passed to the function qsmm_

create is non-zero, or the function qsmm_node_asm receives QSMM_ASM_DETERM_OPT
in flags.

all valid outcomes already tested
Control never reaches an instruction after a joe instruction block because the block
contains tests for all possible outcomes of a user or mixed-type instruction.

ignoring the test for outcome num because such test already exists
The assembler ignores the joe instruction performing a jump on outcome num
because there was an earlier joe instruction also performing a jump on outcome
num.

ignoring the test for outcome num because the outcome is out of range
The assembler ignores the joe instruction performing a jump on outcome num
because that joe instruction tests the outcome of a user or mixed-type instruction
with the number of possible outcomes less than or equal to num.

instruction has no effect because jump probability is 0
The assembler ignores this jprob or case instruction because it specifies a jump
with probability 0.

instruction has no effect because of a jump beneath the ‘choice’ block
The assembler ignores this case instruction because it specifies a jump beneath a
containing choice instruction block.

instruction has no effect because of a jump to the next instruction
The assembler ignores this jprob or joe instruction because it specifies a jump to
the next instruction.

instruction has no effect because of a possible jump to itself
The assembler ignores this jprob instruction because it specifies a jump to itself
with probability less than 1.

instruction is replaceable with a ‘jmp’ instruction
Beneath the jprob instruction with jump probability greater than 0 there is a jmp

instruction transferring control to that jprob instruction. The jprob instruction
does not specify a possible jump to this jmp instruction. The assembler replaces
the jprob instruction with a nop instruction and sets its next instruction address
equal to the jump location of that jprob instruction. Simply put, you can replace
the jprob and jmp instructions with a single jmp instruction.

unreachable state
Control never reaches the state. The assembler generates this warning only when an
stt instruction marks the beginning of that state, the field is_determ_opt of qsmm_
desc_s structure passed to the function qsmm_create is non-zero, or the function
qsmm_node_asm receives QSMM_ASM_DETERM_OPT in flags.

An assembler program can have names assigned to its states by the arguments of stt in-
structions. Use the following function to retrieve the index of a state of a node by the name of
this state after loading an assembler program into the node.

[Function]int qsmm_get_node_state_by_name (qsmm t model, const char
*state_name, qsmm sig t node, qsmm sig t *state_p)

This function retrieves the index of a state of a node of a multinode model by the name of this
state. The argument state name specifies that name assigned by an stt instruction marking
the beginning of this state in an assembler program loaded into the node. The argument
node specifies the identifier of this node.

Chapter 5: Assembler Programs 208

On success, the function returns a non-negative value and sets *state p if state p is not NULL.
If the state exists, the function sets *state p to the index of that state. If the node does not
have an assembler program loaded, or the assembler program does not define a state named
state name, the function sets *state p to QSMM_SIG_INVALID.

If the node uses a source probability profile provided by another node, the function retrieves
the index of a node state defined in an assembler program loaded into the latter node. See
Section 5.11 [Memory Efficient Cloning the Probability Profile], page 226, for a detailed
description of this mode.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_ILSEQ

Unable to convert state name to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following function to retrieve the name of a node state by its index.

[Function]int qsmm_get_node_state_name (qsmm t model, qsmm sig t node,
qsmm sig t state, const char **state_name_pp)

This function retrieves the name of a state of a node of a multinode model by the index of
this state. An stt instruction in an assembler program loaded into the node assigns that
name to the state. The argument node specifies the identifier of this node. The argument
state specifies the index of this state.

On success, the function returns a non-negative value and sets *state name pp if
state name pp is not NULL. If the state has a name assigned by the argument of an stt

instruction, the function sets *state name pp to this name. If the state does not have an
assigned name, the function sets *state name pp to NULL.

If the node uses a source probability profile provided by another node, the function retrieves
a state name specified in an assembler program loaded into the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of this
mode.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_INVAL

The argument state is greater than or equal to the number of node states.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_ILSEQ

Unable to convert a state name to a multibyte string according to a current
locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Chapter 5: Assembler Programs 209

5.9 Using Probability Variables

The ‘prob’ keyword in an assembler program defines a probability variable with a specific name.
A jprob or case instruction can contain the name of a probability variable instead of a numeric
probability value. There are three supported types of probability variables:

• Controlled variables. They are the means of modifying a probability profile loaded into a
node. A single controlled variable can occur in multiple jprob and case instructions.

• Output variables. They are the means of fetching probabilities learned while executing a
node. A single output variable occurs in a single jprob or case instruction.

• Auxiliary variables. They act as constants. The assembler merely replaces every occurrence
of the name of an auxiliary variable with the value of this variable specified using the ‘prob’
keyword.

A controlled probability variable can simultaneously be an output probability variable.

An output probabilities array is the means of fetching probabilities learned for case instruc-
tions in a choice instruction block by their indices. A location label assigned to the choice

instruction block is the name of this array.

5.9.1 Variables in an Assembler Program

The “data” section of an assembler program can contain the definitions of probability variables.
Every definition of a probability variable must be on a separate line. The line begins with
a data label followed by at least one whitespace character, the ‘prob’ keyword, at least one
whitespace character, and the initial value of a probability variable in the range 0 to 1 inclusive.
The data label is the name of this probability variable. The assembler supports fixed-point
and exponential notations for specifying the initial values of probability variables. The “data”
section followed by the “code” section may look like this:

.data

var_name_1 prob val1

var_name_2 prob val2

...

var_name_N prob valN

.code

An assembler program can contain multiple ‘.data’ and ‘.code’ blocks, for example, within
macros later expanded by the assembler preprocessor. The parser of an assembler program
merges those blocks into a single “data” section and a single “code” section.

You can replace numeric probability values in jprob and case instructions with the names
of probability variables previously defined in the “data” section:

jprob var_name, loc_label

case var_name, loc_label

A choice instruction block might look like this:

choice

case var1, L1

case var2, L2

case 0.25, L3

case var1, L4

end choice

After parsing an assembler program, you can obtain the number of probability variables
defined in the assembler program by the following function.

Chapter 5: Assembler Programs 210

[Function]int qsmm_get_prg_nvar (qsmm prg t prg)
This function returns the number of probability variables defined in a program prg using
‘prob’ keywords. A returned value is always non-negative.

Use the following function to get the name of a probability variable by its index.

[Function]const char * qsmm_get_prg_var_name (qsmm prg t prg, int var_idx)
This function returns the name of a probability variable with index var idx in a program prg.
If var idx is negative or greater than or equal to the number of probability variables defined
in the program using ‘prob’ keywords, the function returns NULL.

See Section 5.9.4 [Output Arrays], page 219, for how to define output probabilities arrays in
an assembler program.

5.9.2 Controlled Variables

Controlled probability variables are the means of changing a probability profile loaded into a
node, for example, as a result of reasoning or self-programming.

An assembler program can contain controlled probability variables for profile probabilities in
the state transition matrix only if the environment state identification engine is a small actor—if
the field is_large_env of qsmm_desc_s structure passed to the function qsmm_create is zero.
An assembler program can contain controlled probability variables for profile probabilities in
the action emission matrix only if the instruction emitting engine is a small actor—if the field
is_large_opt of qsmm_desc_s is zero.

You have to register controlled probability variables in the instruction class set of a node.
After registering the variables, you can load into the node an assembler program referencing a
subset of those variables. Later, you can change their values for the node, thereby changing
its probability profile (e.g. while processing instruction invocations by the event handlers of
instruction meta-classes). Changing the value of a controlled probability variable updates profile
probabilities in the state transition matrix and/or action emission matrix for the occurrences of
jprob and case instructions containing this variable as a probability.

Use the following function to register a controlled probability variable in an instruction class
set.

[Function]int qsmm_reg_var_prob (qsmm t model, const char
*instr_class_set_name, const char *var_name, size t *var_idx_p)

This function registers a controlled probability variable var name in the instruction class
set instr class set name of a multinode model. If var idx p is not NULL, the function sets
*var idx p to the index of this variable in the instruction class set.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_EXIST

The instruction class set already has a controlled probability variable var name
registered.

QSMM_ERR_VIOLNODE

There exist nodes belonging to a node class represented by the instruction class
set instr class set name—cannot change its structure.

Chapter 5: Assembler Programs 211

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_NOTSUP

The environment state identification engine and instruction emitting engine are
large actors.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Currently, there are no API functions taking as an argument the index of a controlled proba-
bility variable returned by the function qsmm_reg_var_prob. Instead, functions that query and
set the values of controlled probability variables take the name of a variable as an argument.
To speed up querying and setting the values, future QSMM versions may include counterpart
functions taking the index of a variable instead of its name.

Use the following macro to register a controlled probability variable on processing an event
QSMM_EVT_ENT_INIT by the event handler of an instruction class set.

[Macro]QSMM_REG_VAR_PROB (var_name)
This macro registers a controlled probability variable var name. The macro expands to:

qsmm_reg_var_prob((qsmm), __FUNCTION__, (var_name), 0)

This macro is for expansion from the event handler of an instruction class set. The macro
expects that the name of the event handler function is equal to the name of the instruction
class set and the variable qsmm holding the handle of a multinode model is accessible in the
event handler function. Normally, that variable is an event handler function argument.

Use the following function to get the names of controlled probability variables registered in
an instruction class set.

[Function]int qsmm_enum_var_prob (qsmm t model, const char
*instr_class_set_name, qsmm enum ent callback func t callback_func,
void *paramp)

This function enumerates controlled probability variables registered in the instruction class
set instr class set name of a multinodemodel. The process of enumeration is repeated calling
a callback function callback func receiving QSMM_LREF_PROB_VAR_CTRL as the type of a local
entity reference, the name of a controlled probability variable in a local entity identifier,
and a user parameter paramp. See Section 4.4.4 [Enumerating Entities], page 171, for the
description of callback function type.

If the callback function returns a positive value, the function qsmm_enum_var_prob continues
the enumeration. If the callback function returns zero, qsmm_enum_var_prob terminates the
enumeration and reports success. If the callback function returns a negative value, qsmm_
enum_var_prob terminates the enumeration and reports failure.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

The instruction class set instr class set name does not exist.

QSMM_ERR_TYPE

An entity named instr class set name is not an instruction class set. The entity
is an instruction meta-class.

QSMM_ERR_CALLBACK

The callback function reported an error.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Chapter 5: Assembler Programs 212

Use the following functions to query or set the value of a controlled probability variable.

[Function]int qsmm_get_node_var_prob (qsmm t model, const char *var_name,
qsmm sig t node, double *valp)

This function retrieves the value of the controlled probability variable var name of a node of
a multinode model. The argument node specifies the identifier of this node. If valp is not
NULL, the function sets *valp to a retrieved value.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node or a controlled probability variable named var name
does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_set_node_var_prob (qsmm t model, const char *var_name,
qsmm sig t node, double val)

This function sets to val the value of the controlled probability variable var name of a node
of a multinode model. The argument node specifies the identifier of this node. However, cor-
responding profile probabilities in the state transition matrix and/or action emission matrix
of this node remain unchanged until calling the function qsmm_node_var_realize (described
further on in this subsection).

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument val is not finite or is negative or greater than 1.

QSMM_ERR_NOTFOUND

A node with identifier node or a controlled probability variable named var name
does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

After loading an assembler program into a node, controlled probability variables associated
with the node take on initial values defined in the assembler program.

Assignments to controlled probability variables declared in an instruction class set but not
defined in the assembler program have no effect on profile probabilities in the state transition
matrix and action emission matrix of a node. Assignments to the controlled probability variables
of a node without a loaded assembler program also have no effect on the profile probabilities.

After assigning values to controlled probability variables by the function qsmm_set_node_

var_prob, call the following function to actually update profile probabilities in the state transi-
tion matrix and action emission matrix.

[Function]int qsmm_node_var_realize (qsmm t model, qsmm sig t node, int
rez1)

This function updates profile probabilities in the state transition matrix and/or action emis-
sion matrix of a node of a multinode model according to assignments to controlled probability

Chapter 5: Assembler Programs 213

variables of this node previously made by calling the function qsmm_set_node_var_prob and
clears the queue of pending updates. The argument node specifies the identifier of this node.
The argument rez1 is for future use and must be equal to 0.

For affected action choice states, the function updates the fields nsig_pos and nsig_ctrl of
qsmm_state_s structure. For affected cycle types, the function updates the field profile of
qsmm_cycle_s structure.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_PROFSRCP

The node is a probability profile source for other nodes. See Section 5.11 [Memory
Efficient Cloning the Probability Profile], page 226, for more information on this
mode.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_PSUMGT1

The sum of probabilities of case instructions in a choice instruction block would
exceed 1.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_PSUMGT1, QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and
QSMM_ERR_NOMEM can leave the probability profile of this node in inconsistent state. If af-
ter removing a reason of this error a repeated call to this function succeeds, the probability
profile becomes consistent.

5.9.3 Output Variables

The purpose of output probability variables is to retrieve probabilities learned while executing or
training a node. You do not register variables of this kind in an instruction class set. The function
qsmm_node_asm called with the QSMM_ASM_VAR_OUT flag automatically collects information on
output probability variables in a memory representation of an assembler program while loading
it into a node. An output probability variable can be a controlled probability variable.

Not every probability variable in an assembler program becomes an output probability vari-
able. The first restriction is that the variable must occur in only one jprob or case instruction.
The second restriction is that the variable must have unambiguous context. If a probability vari-
able violates at least one of these restrictions, but the function qsmm_reg_var_prob or macro
QSMM_REG_VAR_PROB has registered it as a controlled probability variable, it becomes only a con-
trolled probability variable. If qsmm_node_asm receives the QSMM_ASM_VAR_AUX flag, a probability

Chapter 5: Assembler Programs 214

variable violates at least one of these restrictions and is not a controlled probability variable,
that function treats the probability variable as an auxiliary variable. If qsmm_node_asm does
not receive QSMM_ASM_VAR_AUX, a probability variable violates at least one of these restrictions
and is not a controlled probability variable, that function reports an error.

Every output probability variable corresponds to either the state transition matrix or action
emission matrix. The enumeration described below represents a matrix type.

[Enumeration]qsmm_mat_e
This enumeration specifies a matrix type. The enumeration contains the following elements.

QSMM_MAT_GOTO

The state transition matrix.

QSMM_MAT_ACTION

The action emission matrix.

QSMM_MAT_COUNT

The number of supported matrix types.

Use the function described below to get the type of a matrix corresponding to an output
probability variable.

[Function]int qsmm_get_node_var_prob_mat (qsmm t model, const char
*var_name, qsmm sig t node, enum qsmm mat e *mat_p)

This function retrieves the type of a matrix corresponding to the output probability variable
var name of a node of a multinode model. The argument node specifies the identifier of this
node. If mat p is not NULL, the function sets *mat p to a retrieved type.

If the node uses a source probability profile provided by another node, the function retrieves
the type of the matrix of the output probability variable of the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of this
mode.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node or an output probability variable named var name
does not exist.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Fetching the value of an output probability variable requires calculating the relative probabil-
ities of all choice alternatives that include an alternative corresponding to the output probability
variable. The cache of calculated probabilities of choice alternatives speeds up fetching the val-
ues of output probability variables for other choice alternatives later. Along with the cache
of calculated probabilities of choice alternatives, a node keeps the cache of calculated values
of output probability variables. To free memory, you can clear both caches by the function
qsmm_node_var_out_forget described further on in this subsection.

An output probability variable can correspond to multiple cells of a state transition matrix.
The following fragment of an assembler program illustrates this situation.

stt "s0"

Chapter 5: Assembler Programs 215

test ; user instruction with multiple

; outcomes (e.g. 3)

jprob var0, L2

stt "s1"

...

L2: stt "s2"

The above fragment of an assembler program does not condition on specific outcomes of
‘test’ instruction (i.e. handles them in the same way). The state transition matrix has rows
for all three outcomes of this instruction and columns for the states ‘s0’, ‘s1’, and ‘s2’. The
fragment of that state transition matrix is in Figure 5.1. There ν denotes a frequency of state
transition, and pp denotes a profile probability.

Figure 5.1: a state transition matrix fragment with multiple cells for a jprob instruction

The function qsmm_get_node_var_prob_out described further on in this subsection supports
calculating probabilities of QSMM_PROB_PROFILE and QSMM_PROB_FQ types for output probability
variables corresponding to individual and multiple cells of state transition matrix and corre-
sponding to individual cells of action emission matrix. That function supports calculating prob-
abilities of QSMM_PROB_AGGR and QSMM_PROB_LEARNED types for output probability variables
corresponding to individual cells only.

If an output probability variable corresponds to multiple cells of state transition matrix,
profile probabilities in those multiple cells are equal, and qsmm_get_node_var_prob_out returns
them as a QSMM_PROB_PROFILE probability. For the above example, qsmm_get_node_var_prob_
out returns value var0 as the probability QSMM_PROB_PROFILE of ‘var0’ output probability
variable. That function does not support calculating probabilities of QSMM_PROB_AGGR and QSMM_

PROB_LEARNED types for this output probability variable.

To calculate a QSMM_PROB_FQ probability, qsmm_get_node_var_prob_out takes the sums of
frequencies of transitions to target states for relative probabilities. For example, to calculate the
probability QSMM_PROB_FQ of ‘var0’ output probability variable, qsmm_get_node_var_prob_out
calculates the sums ν0,1 + ν1,1 + ν2,1 and ν0,2 + ν1,2 + ν2,2 and takes the ratio (ν0,2 + ν1,2 +
ν2,2)/(ν0,1 + ν1,1 + ν2,1 + ν0,2 + ν1,2 + ν2,2) for that probability.

As already mentioned, a probability variable used in multiple jprob and case instructions
cannot be an output probability variable. The following fragment of an assembler program
illustrates this situation.

L1: user 0 ; user instruction

jprob var0, L1 ; first occurrence of ‘var0’ variable

L2: user 1 ; user instruction

jprob var0, L2 ; second occurrence of ‘var0’ variable;

; encountering this occurrence means that

; ‘var0’ cannot be an output

Chapter 5: Assembler Programs 216

; probability variable

jmp L1

A probability variable used once but in ambiguous context cannot be an output probability
variable too. At present, only jprob instructions can have ambiguous context. The context of a
jprob instruction is ambiguous if the blocks of jprob instructions with different start addresses
include this jprob instruction. The following fragment of an assembler program illustrates this
situation.

L1: user 0

jprob 0.5, L3

L2: jprob var0, L1

user 1

L3: user 2

jmp L2

After invoking the ‘user 0’ instruction, the block consisting of ‘jprob 0.5, L3’ and ‘jprob
var0, L1’ instructions selects the next instruction to execute. However, after invoking the ‘user
2’ instruction, only the last instruction of that block selects the next instruction to execute. In
the first case, the block begins with the ‘jprob 0.5, L3’ instruction, and, in the second case, the
block begins with the ‘jprob var0, L1’ instruction and contains only this instruction. That is,
the blocks have different start addresses, the ‘jprob var0, L1’ instruction those blocks contain
has ambiguous context, and, therefore, the variable ‘var0’ cannot be an output probability
variable.

If the function qsmm_node_asm has not generated any warnings for an assembler program it
loaded into a node, the assembler program does not contain instructions in ambiguous context.
If qsmm_node_asm received the QSMM_ASM_VAR_OUT flag, all probability variables that occurred
only once in this assembler program became output probability variables.

Use the following function to get the names of output probability variables of a node.

[Function]int qsmm_enum_var_prob_out (qsmm t model, qsmm sig t node,
qsmm enum ent callback func t callback_func, void *paramp)

This function enumerates output probability variables defined in an assembler program loaded
into a node of a multinode model. The argument node specifies the identifier of this node.

The process of enumeration is repeated calling a callback function callback func receiving
QSMM_LREF_PROB_VAR_OUT as the type of a local entity reference, the name of an output
probability variable in a local entity identifier, and a user parameter paramp. See Section 4.4.4
[Enumerating Entities], page 171, for the description of callback function type.

If the callback function returns a positive value, the function qsmm_enum_var_prob_out con-
tinues the enumeration. If the callback function returns zero, qsmm_enum_var_prob_out

terminates the enumeration and reports success. If the callback function returns a negative
value, qsmm_enum_var_prob_out terminates the enumeration and reports failure.

If the node uses a source probability profile provided by another node, the function enumerates
the output probability variables of the latter node. See Section 5.11 [Memory Efficient Cloning
the Probability Profile], page 226, for a detailed description of this mode.

The function qsmm_enum_var_prob_out does not enumerate the output probabilities arrays of
a node. See Section 5.9.4 [Output Arrays], page 219, for an example program that enumerates
those arrays and prints their content.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

Chapter 5: Assembler Programs 217

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_CALLBACK

The callback function reported an error.

Use the function described below to retrieve the value of an output probability variable.

[Function]int qsmm_get_node_var_prob_out (qsmm t model, const char
*var_name, qsmm sig t node, enum qsmm prob e prob_type, double *valp)

This function retrieves the value of the output probability variable var name of a node of a
multinode model. The argument node specifies the identifier of this node.

The argument prob type specifies the type of a probability to retrieve. See Section 2.5.4
[Emitting an Output Signal], page 41, for the description of elements of qsmm_prob_e enu-
meration. If valp is not NULL, the function sets *valp to a retrieved probability.

If the node uses a source probability profile provided by another node, the function ob-
tains information how to calculate the output probability variable from the latter node. See
Section 5.11 [Memory Efficient Cloning the Probability Profile], page 226, for a detailed
description of this mode.

If the function is able to retrieve the value of that output probability variable, the function
sets *valp to that value (if valp is not NULL) and returns 2. If prob type is QSMM_PROB_AGGR
or QSMM_PROB_LEARNED, and the output probability variable corresponds to multiple cells of
state transition matrix, the function sets *valp to −2 (if valp is not NULL) and returns 1. If
var name is a controlled or auxiliary probability variable that occurs more than once in an
assembler program loaded into the node or has ambiguous context in the assembler program,
the function sets *valp to −1 (if valp is not NULL) and returns 0.

On failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_INVAL

The argument prob type is invalid.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist, or the node does not have an assembler
program loaded, or the assembler program does not define a probability variable
named var name.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal
reported an error by returning NaN. The function qsmm_actor_calc_action_

prob calls the helper function.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

Chapter 5: Assembler Programs 218

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the model instance in inconsistent state.

You can retrieve output probabilities for case instructions in choice instruction blocks via
output probability variables in the case instructions or via output probabilities arrays referred to
by location labels assigned to the choice instruction blocks. Use the function qsmm_get_node_

array_prob_out described in Section 5.9.4 [Output Arrays], page 219, to retrieve an output
probabilities array for a choice instruction block.

QSMM supports fetching aggregate statistics on cycle types for output probability variables
and the elements of output probabilities arrays. The statistics are aggregate in the sense that
if an output probability variable or an element of an output probabilities array corresponds to
multiple cells of state transition matrix, the statistics includes statistics on cycle types in all
those cells. If an output probability variable or an element of an output probabilities array
corresponds to the action emission matrix, aggregate statistics are simply statistics on a cycle
type in an individual cell.

Use the function described below to fetch aggregate statistics on cycle types associated with
an output probability variable. Use the function qsmm_get_node_array_prob_cycle described
in Section 5.9.4 [Output Arrays], page 219, to fetch aggregate statistics on cycle types associated
with an element of an output probabilities array.

[Function]int qsmm_get_node_var_prob_cycle (qsmm t model, const char
*var_name, qsmm sig t node, struct qsmm cycle s *cycle_p, struct
qsmm cspur s *cspur_p)

This function retrieves aggregate statistics on cycle types for the output probability variable
var name of a node of a multinode model. The argument node specifies the identifier of
this node. If cycle p is not NULL, the function sets *cycle p to aggregate statistics on the
cycle types. If cspur p is not NULL, the function sets *cspur p to aggregate statistics on spur
types for the cycle types. See Section 3.2 [Structures for Accessing Storage], page 79, for the
descriptions of qsmm_cycle_s and qsmm_cspur_s structures.

If cspur p is not NULL, and the output probability variable corresponds to the state transition
matrix, the array cspur p must be capable of holding the number of elements returned by
the function qsmm_get_nspur. If cspur p is not NULL, and the output probability variable
corresponds to the action emission matrix, the array cspur p must be capable of holding the
number of elements returned by qsmm_get_nspur minus 1. The function qsmm_get_node_

var_prob_mat described earlier in this subsection retrieves the type of a matrix corresponding
to an output probability variable.

The aggregate statistics composes from statistics on individual cycle types in the following
way. The fields fq, period_sum_d, and period_sum_c of *cycle p are the sums of those fields
for all cycle types associated with the output probability variable. The field cycle p->profile
is equal to that field for last cycle type associated with the output probability variable, as all
such cycle types have the same value of profile field. The fields delta_sum in the elements
of cspur p array are the sums of corresponding fields for all cycle types associated with the
output probability variable.

If the node uses a source probability profile provided by another node, the function obtains
information how to calculate aggregate statistics from the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of
this mode.

On success, the function returns a non-negative number of cycle types making up the aggre-
gate statistics. If this number is greater than INT_MAX, the function returns INT_MAX. On

Chapter 5: Assembler Programs 219

failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node or an output probability variable named var name
does not exist.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The function qsmm_get_node_var_prob_out stores all values of output probability variables
calculated for a node in a cache within the node. The functions qsmm_node_call_default (see
Section 4.3.2.1 [Calling a Node], page 149), qsmm_node_unload (see Section 5.12 [Unloading
the Probability Profile], page 229), and qsmm_engine_destroy (see Section 4.2.6 [Creating the
Model Instance], page 143) and the function qsmm_node_disasm called to disassemble a node
assembled with the QSMM_ASM_TEMPLATE flag automatically clear this cache along with the cache
of calculated probabilities of choice alternatives mentioned earlier. To free memory, you can
manually clear both caches by the following function.

[Function]int qsmm_node_var_out_forget (qsmm t model, qsmm sig t node)
This function clears a cache of calculated probabilities of output probability variables and a
cache of calculated probabilities of choice alternatives both stored in a node of a multinode
model. The argument node specifies the identifier of this node. The function qsmm_get_

node_var_prob_out uses both caches to speed up retrieving the output probability variables
of this node. The function qsmm_get_node_array_prob_out uses the second cache to speed
up retrieving the output probabilities arrays of this node.

On success, the function returns a non-negative value. If a node with identifier node does
not exist, the function returns negative error code QSMM_ERR_NOTFOUND.

5.9.4 Output Arrays

A location label assigned to a choice instruction block refers to an output probabilities array
for this choice instruction block. The choice instruction block might look like this:

ARR: choice

case 0.15, L1

case 0.05, L2

case 0.10, L3

case 0.20, L4

end choice

This example defines the output probabilities array ‘ARR’ with four elements corresponding to
case instructions in the choice instruction block. The element with index 0 corresponds to the

Chapter 5: Assembler Programs 220

‘case 0.15, L1’ instruction, and the element with index 3 corresponds to the ‘case 0.20, L4’
instruction.

An output probabilities array corresponds to either the state transition matrix or action
emission matrix. Use the function described below to get a matrix type.

[Function]int qsmm_get_node_array_prob_mat (qsmm t model, const char
*label, qsmm sig t node, enum qsmm mat e *mat_p)

This function retrieves the type of a matrix corresponding to an output probabilities array
of a node of a multinode model. The argument node specifies the identifier of this node. A
location label assigned to a choice instruction block in an assembler program loaded into the
node identifies the array. If mat p is not NULL, the function sets *mat p to a retrieved type.
See Section 5.9.3 [Output Variables], page 213, for the description of elements of qsmm_mat_e
enumeration.

If the node uses a source probability profile provided by another node, the function retrieves
the type of the matrix of the output probabilities array of the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of this
mode.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node or an output probabilities array label does not exist.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the function described below to get a segment of an output probabilities array.

[Function]int qsmm_get_node_array_prob_out (qsmm t model, const char
*label, qsmm sig t node, size t from, size t to, enum qsmm prob e
prob_type, double *prob_p)

This function retrieves a segment of an output probabilities array of a node of a multinode
model. The argument node specifies the identifier of this node. A location label assigned
to a choice instruction block in an assembler program loaded into the node identifies the
array. If prob p is not NULL, the function copies output probabilities from the array to a
buffer prob p starting at offset 0.

The argument prob type specifies the type of probabilities to retrieve. See Section 2.5.4
[Emitting an Output Signal], page 41, for the description of elements of qsmm_prob_e enu-
meration. If prob type is QSMM_PROB_AGGR or QSMM_PROB_LEARNED, and each array element
corresponds to multiple cells of state transition matrix, the function retrieves all array ele-
ments equal to −2.
The arguments from and to specify the index of first element and the index of last element
(exclusive) for the retrieved array segment. If to is 0, the function uses array length as the
index of last element. The number of elements copied to prob p is equal to the index of last
element minus from.

A special element of an output probabilities array at index equal to array length corresponds
to a choice alternative beneath the choice instruction block. This choice alternative re-
ceives control if none of case instructions in the choice instruction block transferred control
elsewhere. To retrieve this special element, specify to equal to array length plus 1.

Chapter 5: Assembler Programs 221

If the node uses a source probability profile provided by another node, the function obtains
information how to calculate the array elements from the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of
this mode.

On success, the function returns a positive number of elements to store in prob p starting
at offset 0 as if prob p is never NULL. If this number is greater than INT_MAX, the function
returns INT_MAX. On failure, the function returns a negative error code. Currently, the
function can return the following error codes.

QSMM_ERR_INVAL

The argument prob type is invalid, or from is greater than or equal to the index
of last element, or to is greater than array length plus 1.

QSMM_ERR_NOTFOUND

A node with identifier node or an output probabilities array label does not exist.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_CALLBACK

A helper function for computing the relative probability of an output signal
reported an error by returning NaN. The function qsmm_actor_calc_action_

prob calls the helper function.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the model instance in inconsistent state.

When calculating a segment of an output probabilities array of a node, the function qsmm_

get_node_array_prob_out stores in a cache within the node the calculated probabilities of
all choice alternatives corresponding to the output probabilities array. The cache speeds up
retrieving the elements of this output probabilities array later. Call the function qsmm_node_

var_out_forget to manually clear the cache. See Section 5.9.3 [Output Variables], page 213,
for more information on the cache and functions that clear it automatically.

Use the function described below to fetch aggregate statistics on cycle types associated with
an element of an output probabilities array. See Section 5.9.3 [Output Variables], page 213, for
the description of a counterpart function fetching aggregate statistics on cycle types associated
with an output probability variable and for additional information on the concept of aggregate
statistics.

Chapter 5: Assembler Programs 222

[Function]int qsmm_get_node_array_prob_cycle (qsmm t model, const char
*label, qsmm sig t node, size t offs, struct qsmm cycle s *cycle_p, struct
qsmm cspur s *cspur_p)

This function retrieves aggregate statistics on cycle types for an element of an output prob-
abilities array of a node of a multinode model. The argument node specifies the identifier of
this node. A location label assigned to a choice instruction block in an assembler program
loaded into the node identifies the array.

The argument offs specifies the index of this array element. A special element of an out-
put probabilities array at index equal to array length corresponds to a choice alternative
beneath the choice instruction block. This choice alternative receives control if none of case
instructions in the choice instruction block transferred control elsewhere.

If cycle p is not NULL, the function sets *cycle p to aggregate statistics on the cycle types. If
cspur p is not NULL, the function sets *cspur p to aggregate statistics on spur types for the
cycle types. See Section 3.2 [Structures for Accessing Storage], page 79, for the descriptions
of qsmm_cycle_s and qsmm_cspur_s structures.

If cspur p is not NULL, and the output probabilities array corresponds to the state transition
matrix, the array cspur p must be capable of holding the number of elements returned by
the function qsmm_get_nspur. If cspur p is not NULL, and the output probabilities array
corresponds to the action emission matrix, the array cspur p must be capable of holding
the number of elements returned by qsmm_get_nspur minus 1. The function qsmm_get_

node_array_prob_mat described earlier in this subsection retrieves the type of a matrix
corresponding to an output probabilities array.

The aggregate statistics composes from statistics on individual cycle types in the following
way. The fields fq, period_sum_d, and period_sum_c of *cycle p are the sums of those fields
for all cycle types associated with the element of the output probabilities array. The field
cycle p->profile is equal to that field for last cycle type associated with the element of the
output probabilities array, as all such cycle types have the same value of profile field. The
fields delta_sum in the elements of cspur p array are the sums of corresponding fields for all
cycle types associated with the element of the output probabilities array.

If the node uses a source probability profile provided by another node, the function obtains
information how to calculate aggregate statistics from the latter node. See Section 5.11
[Memory Efficient Cloning the Probability Profile], page 226, for a detailed description of
this mode.

On success, the function returns a non-negative number of cycle types making up the aggre-
gate statistics. If this number is greater than INT_MAX, the function returns INT_MAX. On
failure, the function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_INVAL

The argument offs is greater than the length of the output probabilities array.

QSMM_ERR_NOTFOUND

A node with identifier node or an output probabilities array label does not exist.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

Chapter 5: Assembler Programs 223

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

To dump the contents of all output probabilities arrays defined in an assembler program,
consider only instructions with the type QSMM_INSTR_CHOICE. Use the function qsmm_get_

instr_type to obtain the type of an assembler instruction by its handle. If an instruction with
the type QSMM_INSTR_CHOICE has at least one location label assigned, the instruction has an
associated output probabilities array. The call qsmm_get_instr_label(instr,0), where instr
is an instruction handle, returns the first location label identifying the output probabilities array.
If that call returns NULL, the instruction does not have location labels assigned and, therefore,
does not have an associated output probabilities array. The length of an associated output
probabilities array is equal to the return value of qsmm_get_instr_nnested function minus 1,
as the last nested instruction is the ‘end choice’ instruction.

Below there is an example function that dumps the contents of all output probabilities arrays
of a node containing an assembler program prg. The function returns 0 on success or −1 on out
of memory error.

#include <stdlib.h>

#include <qsmm/qsmm.h>

static int

dump_arr_prob_out(

qsmm_t qsmm,

qsmm_sig_t node,

qsmm_prg_t prg,

enum qsmm_prob_e prob_type

) {

int result=-1;

double *probp=0;

size_t prob_allo=0;

const size_t ninstr=qsmm_get_prg_ninstr(prg);

for (size_t iinstr=0; iinstr<ninstr; iinstr++) {

const qsmm_instr_t instr=qsmm_get_prg_instr(prg,iinstr);

const char *const labelp=qsmm_get_instr_label(instr,0);

if (!labelp) continue;

if (qsmm_get_instr_type(instr)!=QSMM_INSTR_CHOICE) continue;

const size_t nprob=qsmm_get_instr_nnested(instr)-1;

if (prob_allo<nprob) {

double *const newp=realloc(probp,nprob*sizeof(*newp));

if (!newp) goto Exit;

prob_allo=nprob;

probp=newp;

}

qsmm_get_node_array_prob_out(qsmm, labelp, node, 0, nprob,

prob_type, probp);

for (size_t iprob=0; iprob<nprob; iprob++)

printf("%s[%zu]=%.15E\n",labelp,iprob,probp[iprob]);

Chapter 5: Assembler Programs 224

}

result=0;

Exit:

if (probp) free(probp);

return result;

}

5.9.5 Auxiliary Variables

Auxiliary probability variables act as constants. A controlled or output probability variable can
never simultaneously be an auxiliary probability variable. The function qsmm_node_asm replaces
the occurrences of auxiliary probability variables in jprob and case instructions with the values
of those variables specified using ‘prob’ keywords. You cannot access auxiliary probability
variables after loading an assembler program into a node.

You pass the QSMM_ASM_VAR_AUX flag to qsmm_node_asm to load an assembler program con-
taining auxiliary probability variables. An occurrence of a probability variable in an assembler
program is valid if the probability variable is a controlled or output probability variable, or
if qsmm_node_asm received the QSMM_ASM_VAR_AUX flag. Note that you first register controlled
probability variables in an instruction class set, and you pass the QSMM_ASM_VAR_OUT flag to
qsmm_node_asm to collect information on output probability variables.

5.10 Cloning the Probability Profile

To load the same probability profile into multiple nodes of a multinode model, you can load
an assembler program into one node and copy its probability profile to other nodes—clone a
probability profile. Cloning a probability profile from a node to other nodes is faster than loading
the same assembler program into them.

Use the function described below to clone a probability profile.

[Function]int qsmm_node_profile_clone (qsmm t model, qsmm sig t node_from,
qsmm sig t node_to, unsigned int flags)

This function copies a probability profile from a node of a multinode model to another
node of this model. The argument node from specifies the identifier of a source node. The
argument node to specifies the identifier of a destination node. The function clears event
history statistics collected for the destination node. If the destination node already has a
probability profile loaded, the function first unloads the profile from this node along with
additional information the function can copy (see the description of flags argument below).
To clear the event history statistics and unload the profile, this function calls the function
qsmm_node_unload described in Section 5.12 [Unloading the Probability Profile], page 229.
The function qsmm_node_profile_clone cannot copy probability profiles manually written
to storage without prior calling the function qsmm_node_asm.

The argument flags is a bitmask specifying the types of information to copy from the source
node to the destination node along with the probability profile. The following macros specify
the bits of this bitmask taken into account.

[Macro]QSMM_NODE_CLONE_VARS
Copy the definitions of controlled and output probability variables and arrays. This copy-
ing makes it possible to modify the controlled probability variables of the destination node
and to retrieve the output probability variables and arrays of that node, as you can modify
and retrieve them for the source node. Before copying the definitions of controlled prob-
ability variables, this function calls the function qsmm_node_var_realize for the source
node if that node has uncommitted assignments to controlled probability variables.

Chapter 5: Assembler Programs 225

[Macro]QSMM_NODE_CLONE_STATE_NAMES
Copy names assigned to node states by the arguments of stt instructions. The functions
qsmm_get_node_state_name and qsmm_get_node_state_by_name can retrieve this infor-
mation from the destination node. The function qsmm_node_disasm can use this infor-
mation when disassembling the destination node. The function qsmm_mat_goto_dump_v2

uses this information when dumping the state transition matrix of that node. The func-
tion qsmm_mat_action_dump_v2 uses this information when dumping the action emission
matrix of that node.

[Macro]QSMM_NODE_CLONE_TEMPLATE
If the source node has an associated assembler program template, copy the template. The
function qsmm_node_disasm uses this template when disassembling the destination node.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument node from is equal to the argument node to.

QSMM_ERR_NOTFOUND

The source or destination node does not exist.

QSMM_ERR_NOPROF

The source node does not have a loaded probability profile.

QSMM_ERR_NOEQCLAS

The instruction class set of the source node and the instruction class set of the
destination node are different.

QSMM_ERR_NOSTATE

The destination node has the number of states less than it is necessary to hold
the probability profile of the source node.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_PROFSRCU

The source node is a user of a source probability profile provided by another
node.

QSMM_ERR_PROFSRCP

One of the following conditions is true:

– destination node is a probability profile source for other nodes;

– function qsmm_node_profile_clone called the function qsmm_node_var_

realize for the source node, and the latter function has failed because that
node is a probability profile source for other nodes.

This error can leave the probability profile of the destination node in inconsistent
state. If after removing a reason of this error a repeated call to this function
succeeds, the probability profile becomes consistent.

QSMM_ERR_PSUMGT1

The function qsmm_node_profile_clone called the function qsmm_node_var_

realize for the source node, and the latter function failed because the sum of
probabilities of case instructions in a choice instruction block would exceed 1.

Chapter 5: Assembler Programs 226

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_PSUMGT1, QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and
QSMM_ERR_NOMEM can leave the probability profile of the source or destination node in in-
consistent state. If after removing a reason of this error a repeated call to this function
succeeds, the probability profile becomes consistent.

5.11 Memory Efficient Cloning the Probability Profile

QSMM supports a mechanism of deferred copying a probability profile from a source node to a
destination node, where a copying operation itself only sets a correspondence between the two
nodes—the source node becomes a probability profile source, and the destination node becomes
a probability profile user. A node can be a probability profile source for multiple other nodes.
Storage redirection functions described in Section 3.5 [Providing Initial Statistics], page 89,
provide read-only access for the destination node to the probability profile held in the source
node.

A deferred copying operation provides copy-on-write behavior for the instances of qsmm_
state_s and qsmm_cycle_s structures described in Section 3.2 [Structures for Accessing Stor-
age], page 79. Those instances hold a probability profile along with statistics on the event
history. The first operation of writing statistics to such an instance for the destination node
causes allocating the instance and copying there a piece of information on the probability profile
from the source node.

You can change the values of controlled probability variables for the destination node in
the normal way. An assembler program loaded into the source node provides information on
how to update the state transition matrix and action emission matrix of the destination node
when changing the values of controlled probability variables for the destination node. Updating
the state transition matrix and action emission matrix causes the allocation of instances of
qsmm_state_s and qsmm_cycle_s for the destination node if they do not yet exist.

The following information held in a source node becomes automatically available for a desti-
nation node:

• Information on output probability variables and arrays collected when loading an
assembler program into the source node. The functions qsmm_get_node_var_prob_out,
qsmm_get_node_array_prob_out, qsmm_get_node_var_prob_cycle, qsmm_get_node_

array_prob_cycle, qsmm_get_node_var_prob_mat, qsmm_get_node_array_prob_mat,
and qsmm_enum_var_prob_out called for the destination node use this information.

• Names assigned to the states of an assembler program loaded into the source node. The
functions qsmm_get_node_state_name and qsmm_get_node_state_by_name called for the
destination node retrieve this information. The function qsmm_node_disasm called for the
destination node can use this information. The functions qsmm_mat_goto_dump_v2 and
qsmm_mat_action_dump_v2 called for the destination node use this information.

• An assembler program template associated with the source node. The function qsmm_node_

disasm called to disassemble the destination node automatically applies the template.

Chapter 5: Assembler Programs 227

You cannot perform the following operations on a node acting as a probability profile source
for other nodes:

– loading an assembler program into the node by the function qsmm_node_asm;

– copying a probability profile to the node by the function qsmm_node_profile_clone;

– setting the node as a user of a probability profile provided by another node using the
function qsmm_set_node_profile_source;

– unloading a probability profile from the node by the function qsmm_node_unload;

– destroying the node by the function qsmm_node_destroy;

– committing assignments to probability variables of the node by the function qsmm_node_

var_realize.

You cannot perform the following operations on a node acting as a user of a probability
profile provided by another node:

– setting the node as a probability profile source for other nodes;

– cloning a probability profile from the node to another node by the function qsmm_node_

profile_clone;

– setting the number of node states by the function qsmm_set_node_nstate.

Applying deferred copying operations makes sense when a multinode model allocates storage
dynamically—uses map storage for holding statistics on the event history.

When dumping the state transition matrix or action emission matrix of a node acting as a
probability profile user or disassembling such node, keep in mind that its set of probabilities of
QSMM_PROB_PROFILE type can be incomplete, as some instances of qsmm_state_s structure from
a source node might not yet be available for the destination node. Therefore, avoid calculating
probabilities of QSMM_PROB_PROFILE type for a node acting as a probability profile user.

Using the deferred copying mechanism for nodes of a multinode model slows down all access
operations to storage used by the multinode model approximately twice (even for other nodes
of this model).

Use the following function to set a correspondence between two nodes of a multinode model
where one node becomes a probability profile source and the other node becomes a probability
profile user.

[Function]int qsmm_set_node_profile_source (qsmm t model, qsmm sig t
node_from, qsmm sig t node_to, int rez1)

This function sets a node of a multinode model as the source of a probability profile and sets
another node of this model as a user of this probability profile. The argument node from
specifies the identifier of the source node. The argument node to specifies the identifier of
the destination node. The argument rez1 is for future use and must be equal to 0.

The function clears event history statistics collected for the destination node. If the des-
tination node has a probability profile loaded, the function unloads the profile along with
information dependent on it. To clear the event history statistics and unload the profile,
this function calls the function qsmm_node_unload described in Section 5.12 [Unloading the
Probability Profile], page 229.

If the source node has uncommitted assignments to controlled probability variables, the
function qsmm_set_node_profile_source calls the function qsmm_node_var_realize for
that node.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument node from is equal to the argument node to.

Chapter 5: Assembler Programs 228

QSMM_ERR_NOTFOUND

The source or destination node does not exist.

QSMM_ERR_NOPROF

The source node does not have a loaded probability profile.

QSMM_ERR_NOEQCLAS

The instruction class set of the source node and the instruction class set of the
destination node are different.

QSMM_ERR_NOSTATE

The destination node has the number of states less than it is necessary to hold
the probability profile of the source node.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_UNSUPPLA

The multinode model has positive length of look-ahead signal segment.

QSMM_ERR_PROFSRCU

The source node is a user of a source probability profile provided by another
node.

QSMM_ERR_PROFSRCP

One of the following conditions is true:

– destination node is a probability profile source for other nodes;

– function qsmm_set_node_profile_source called the function qsmm_node_

var_realize for the source node, and the latter function has failed because
that node is a probability profile source for other nodes.

This error can leave the probability profile of the destination node in inconsistent
state. If after removing a reason of this error a repeated call to this function
succeeds, the probability profile becomes consistent.

QSMM_ERR_PSUMGT1

The function qsmm_set_node_profile_source called the function qsmm_node_

var_realize for the source node, and the latter function failed because the sum
of probabilities of case instructions in a choice instruction block would exceed
1.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_PSUMGT1, QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and
QSMM_ERR_NOMEM can leave the probability profile of the source or destination node in in-
consistent state. If after removing a reason of this error a repeated call to this function
succeeds, the probability profile becomes consistent.

The function qsmm_node_unload described in the next section can break off a correspondence
between a node acting as a probability profile source and a node acting as a probability profile
user.

Chapter 5: Assembler Programs 229

5.12 Unloading the Probability Profile

Use the function described below to unload statistics and a probability profile from a node.

[Function]int qsmm_node_unload (qsmm t model, qsmm sig t node)
This function performs the following operations on a node of a multinode model:

– if the node is a probability profile user, break off its correspondence with a node acting
as a probability profile source;

– unload statistics collected on the event history for the node;

– unload the probability profile of the node;

– if the node has an assembler program loaded, unload information on controlled and
output probability variables defined in the assembler program;

– if the node has an assembler program loaded, unload information about names assigned
to the states of this assembler program;

– unload an assembler program template used for disassembling;

– destroy the cache of calculated probabilities of output probability variables and the cache
of calculated probabilities of choice alternatives.

The argument node specifies the identifier of this node.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_NOTFOUND

A node with identifier node does not exist.

QSMM_ERR_PROFSRCP

The node is a probability profile source for other nodes. See Section 5.11 [Memory
Efficient Cloning the Probability Profile], page 226, for more information on this
mode.

QSMM_ERR_UNTIMELY

The model instance does not exist.

QSMM_ERR_STORAGE

A Storage API function reported storage failure.

QSMM_ERR_STATS

Inconsistent statistics on an action choice state or cycle type detected.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Errors QSMM_ERR_STORAGE, QSMM_ERR_STATS, QSMM_ERR_ILSEQ, and QSMM_ERR_NOMEM can
leave the probability profile of this node or its statistics in inconsistent state. If after re-
moving a reason of this error a repeated call to this function succeeds, the probability profile
and statistics become unloaded.

5.13 Using the Assembler Preprocessor

In QSMM, the assembler preprocessor provides the means of encapsulating similar blocks of
source code in macros reusable in an assembler program. Those macros can define nested control
transfer structures and produce unique location labels when expanded. The preprocessor also
provides the means of including other files in an assembler source file.

Chapter 5: Assembler Programs 230

The assembler preprocessor returns a single output buffer with a preprocessed program text
for an assembler program and all included source files. The preprocessed output might contain
‘line’ directives describing the locations of preprocessed text fragments in source files. The
preprocessor includes this information in error and note messages. The assembler includes this
information in error, warning, and note messages. The preprocessor also merges (quoted) string
literals on a line going one after another and delimited by zero or more whitespace characters
into a single string literal.

When performing transformations of a source text, the assembler preprocessor may break
the alignment of multi-line comments. This broken alignment may prevent proper detection by
the assembler whether a multi-line comment continues on the next line, and the assembler may
assign comments to some instructions incorrectly. At present, you cannot generally avoid this
shortcoming.

The assembler preprocessor provides only basic features necessary to work with symbols and
macros. If you need more sophisticated features to generate the source text of an assembler
program, either produce input to the preprocessor using an auxiliary function, program, or
script or generate an assembler program that does not require preprocessing by those means
directly.

5.13.1 Changing Line Number and File Name

Use the ‘line’ directive of the assembler preprocessor to change current line number and, pos-
sibly, the logical name of a preprocessed source file tracked by the preprocessor with emitting a
corresponding ‘line’ directive to preprocessed output for subsequent interpreting by the assem-
bler. Additionally, the assembler preprocessor uses information changed by the ‘line’ directive
when generating error and note messages.

The directive must be on a line of its own (after at least one whitespace character at the
beginning of the line) and must have one of the following formats:

line line_number

line line_number, file_name

In the first case, the directive changes the logical number of the next line in a current source
file to line number. In the second case, the directive changes the logical number of the next
line to line number and the logical name of the current source file to file name. The parameter
file name must be a (quoted) string literal.

5.13.2 Including Other Source Files

To include another source file in an assembler source file, use the ‘include’ directive:

include string_literal

The argument string literal specifies a (quoted) absolute or relative path to an included file.
The base directory for the relative path is:

– a directory containing a file with the ‘include’ directive;

– a base directory specified as a preprocessing parameter if the name of the file with the
‘include’ directive is unknown;

– a current working directory if the base directory not specified as a preprocessing parameter.

The directive must be on a line of its own after at least one whitespace character at the
beginning of the line. The directive must not occur within a macro definition. The maximum
nesting level of ‘include’ directives is 100.

5.13.3 Defining Symbols

To define or redefine a symbol, use the ‘def’ directive:

name def value

Chapter 5: Assembler Programs 231

This statement defines or redefines a symbol name to a value. A symbol name must start at the
beginning of a line. A symbol value must not contain commas outside of string literals.

There are two possible scopes of a symbol: global and local. Defining a symbol outside of
macros makes the symbol global. If a symbol is global one, a ‘def’ directive used for this symbol
inside a macro redefines the global symbol to a new value.

Defining a symbol inside a macro makes the symbol local. Macro arguments are also local
symbols. Local symbols are not visible outside of macros containing their definitions. If a symbol
is local one, a ‘def’ directive used for this symbol inside a macro (containing the definition of
this symbol) redefines the local symbol to a new value.

The assembler preprocessor replaces with a symbol value every occurrence of a symbol name
as a token in the scope of this symbol (after its definition or redefinition). To concatenate the
symbol value with adjacent tokens, prepend and/or append the characters ‘##’ to the symbol
name token.

For example, the source text

st def 01

choice

case a##st##_00, l##st##_00

case a##st##_01, l##st##_01

end choice

jmp l##st##_02

preprocesses to the text

choice

case a01_00, l01_00

case a01_01, l01_01

end choice

jmp l01_02

If a symbol value is not a (quoted) string literal, prepend the character ‘#’ to the symbol
name token to convert the symbol value to a string literal. For example, the source text

id def 5

s##id: stt #id

preprocesses to the text

s5: stt "5"

The value of a defined or redefined symbol can contain symbol names. After expanding
those symbol names, the value of this symbol must reduce to either a string literal or other text
without string literals, spaces, and commas.

The assembler preprocessor supports the predefined symbol ‘__UNIQUE__’ expanded to the
next number from the sequence of natural numbers. You can use that symbol to generate unique
location labels in macros.

5.13.4 Defining Macros

A macro definition looks like this:

name macro arg1, arg2, ...

text

end macro

Chapter 5: Assembler Programs 232

The above code block defines a macro name with arguments arg1, arg2, . . . A macro may have
no arguments at all. The names of macro arguments work as the names of local symbols usable
within the macro.

If a macro has a long list of arguments, you can split the list into multiple lines. To indicate
that a line of a list of arguments continues on the next line, terminate a continued line with a
comma after the name of an argument. The following example demonstrates this:

mac1 macro arg1, arg2, arg3, arg4,

arg5, arg6, arg7, arg8

...

end macro

You may not define nested macros. However, a macro can expand another macro expanding
another macro and so on. The maximum supported nesting level of macro expansions is 65535.

To expand a macro name defined earlier in a source text and use arg1, arg2, . . . for the
values of macro arguments, write a line like this:

name arg1, arg2, ...

The name of an expanded macro must be on a line of its own. The line must begin with
either at least one whitespace character followed by that name or a location label definition
followed by at least one whitespace character and that name.

The assembler preprocessor does not perform the substitutions of symbol names with symbol
values in the names of expanded macros. However, the preprocessor performs such substitutions
in the values of macro arguments. After substituting, the value of every macro argument must
reduce to either a string literal or other text without string literals, spaces, and commas.

If you are expanding a macro using a long list of arguments, you can split the list into
multiple lines. To indicate that a line of a list of arguments continues on the next line, terminate a
continued line with a comma after the value of an argument. The following example demonstrates
this:

mac1 "alpha", 0.1, "beta", 0.2,

"gamma", 0.3, "delta", 0.4

5.13.5 Generating Unique Location Labels

Macros often contain the definitions of location labels that must not duplicate when expanding
a macro multiple times. To define a number of location labels in the local scope of a macro, you
can define local symbols for them using lines of code like these:

lu0 def u##__UNIQUE__

lu1 def u##__UNIQUE__

lu2 def u##__UNIQUE__

The above directives define the symbols lu0, lu1, and lu2 with values that have the form ui,
where i is an increasing integer number. When expanding the macro the first time, the symbols
lu0, lu1, and lu2 take the values u1, u2, u3 (if there are no definitions of other symbols using
the predefined symbol ‘__UNIQUE__’). When expanding the macro the second time, the symbols
lu0, lu1, and lu2 take the values u4, u5, u6, and so on. Thus, the values of the symbols
lu0, lu1, and lu2 are always unique, and you can use them for location labels within macros
expanded multiple times. The following example of a macro illustrates this:

emit_ch macro

lu0 def u##__UNIQUE__

lu1 def u##__UNIQUE__

lu2 def u##__UNIQUE__

Chapter 5: Assembler Programs 233

choice

case 0.33, lu0

case 0.33, lu1

end choice

emit "A"

jmp lu2

lu0: emit "B"

jmp lu2

lu1: emit "C"

lu2:

end macro

This macro emits the character ‘A’, ‘B’, or ‘C’ by the corresponding user instruction emit.
You can safely expand the macro an arbitrary number of times—location labels are unique in
every expansion. For example, to emit a sequence of two characters, expand the macro twice:

...

emit_ch

emit_ch

...

5.13.6 Getting Preprocessed Output

The functions qsmm_parse_asm_source_buf, qsmm_parse_asm_source_stream, and qsmm_

parse_asm_source_file described in Section 5.7 [Parsing an Assembler Program], page 202,
can automatically call the assembler preprocessor to preprocess a source program text if they
receive the QSMM_PARSE_ASM_PREPROCESS flag. However, sometimes it might be necessary to
obtain a preprocessed source text directly. Use the following functions to accomplish this task.

[Function]int qsmm_preprocess_asm_source_buf (const char *in_p, const char
*cwd_p, int rez1, void *rez2, void *rez3, qsmm msglist t msglist, char
**out_pp)

[Function]int qsmm_preprocess_asm_source_stream (FILE *filep, const char
*cwd_p, int rez1, void *rez2, void *rez3, qsmm msglist t msglist, char
**out_pp)

The function qsmm_preprocess_asm_source_buf preprocesses a source program text pro-
vided via the argument in p as a string. The function qsmm_preprocess_asm_source_stream
preprocesses a source program text read from a stream filep.

If out pp is not NULL, both functions set *out pp to an allocated string containing prepro-
cessed output. If the preprocessor produces zero-length output, both functions set *out pp
to NULL. If *out pp is not NULL, free by the function free a memory block addressed by
*out pp after use.

If msglist is not NULL, both functions add to a message list msglist error and note messages
generated while preprocessing the source program text. If cwd p is not NULL, both functions
use a string cwd p as the name of a current working directory when resolving ‘include’
directives. If cwd p is NULL, both functions use an actual current working directory when
resolving ‘include’ directives. The arguments rez1, rez2, and rez3 are for future use and
must be equal to 0.

On success, both functions return a non-negative number of bytes in the preprocessed output
or INT_MAX if this number is greater than INT_MAX. If out pp is not NULL, and this number

Chapter 5: Assembler Programs 234

is greater than 0 and less than INT_MAX, it is the length of a string *out pp. On failure, both
functions return a negative error code. Currently, the functions can return the following error
codes.

QSMM_ERR_PRG

The source program text has at least one error. Ifmsglist is not NULL, the message
list msglist contains at least one error message.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale, including the inability to convert the source program text to a
wide string and the inability to convert the preprocessed output to a multibyte
string.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

[Function]int qsmm_preprocess_asm_source_file (const char *fln, int rez1,
void *rez2, void *rez3, qsmm msglist t msglist, char **out_pp)

This function preprocesses a source program text read from a file fln. If out pp is not
NULL, the function sets *out pp to an allocated string containing preprocessed output. If the
preprocessor produces zero-length output, the function sets *out pp to NULL. If *out pp is
not NULL, free by the function free a memory block addressed by *out pp after use.

If msglist is not NULL, the function adds to a message list msglist error and note messages
generated while preprocessing the source program text. The arguments rez1, rez2, and rez3
are for future use and must be equal to 0.

On success, the function returns a non-negative number of bytes in the preprocessed output
or INT_MAX if this number is greater than INT_MAX. If out pp is not NULL, and this number
is greater than 0 and less than INT_MAX, it is the length of a string *out pp. On failure, the
function returns a negative error code. Currently, the function can return the following error
codes.

QSMM_ERR_LIBC

The operating system reported a file access error. The variable errno holds the
error code.

QSMM_ERR_PRG

The source program text has at least one error. Ifmsglist is not NULL, the message
list msglist contains at least one error message.

QSMM_ERR_ILSEQ

Unable to convert a multibyte string to a wide string or vice versa according to
a current locale, including the inability to convert the source program text to a
wide string and the inability to convert the preprocessed output to a multibyte
string.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

5.14 Example of Working with an Assembler Program

In the example of working with an assembler program, an agent controlled by the sample program
has to find a path to the gold in a labyrinth and then to an exit from the labyrinth. As in the
sample program samples/labyr2.c described in Section 2.11 [Example of Using the Actor API],
page 69, the C source code contains the picture of this labyrinth encoded using a subset of ASCII

Chapter 5: Assembler Programs 235

characters resembling pseudographics. You can change that picture to test agent behavior for
various labyrinth configurations.

To learn a labyrinth configuration, the agent visits the labyrinth the number of times defined
by the macro NVISIT. Moving the agent to a cell designated as a labyrinth exit finishes a
labyrinth visit.

The picture of a labyrinth cell is in Figure 2.8. See the description of a labyrinth cell and the
macros MAX_X, MAX_Y, ENTRY_X and ENTRY_Y around that figure.

The agent does not know its precise location in the labyrinth in the default mode of program
operation—the agent receives a limited amount of information about a current location. This
information includes an indication whether a current cell is an exit from the labyrinth and, if the
current cell is not an exit from the labyrinth, the union of the following pieces of information:

– an indication whether last move was successful or unsuccessful because of an obstacle;

– a bitmask of four bits indicating the ability to move in the north, east, south, or west
direction from a current cell; an obstacle prevents a move;

– an indication whether the agent has taken the gold during a current labyrinth visit.

The macro NSTATE specifies the number of tracked environment states in the default mode
of program operation. Defining that macro to a lesser value may result in infinite looping.

Just after its invocation, the sample program prints the number of tracked environment
states. After every labyrinth visit, the sample program prints the following information:

1. The ordinal number of a labyrinth visit.

2. The number of times the agent found the gold since the beginning of program execution.

3. The length of last visiting path.

4. The length of all traversed visiting paths.

5. The average amount of gold found per one move in the labyrinth.

In the default mode of program operation, the agent visits the labyrinth a number of times
without taking the gold until at some point the agent usually “understands” how to take the
gold and then finds the gold at almost every labyrinth visit.

At last labyrinth visit, the sample program switches the terminal to full-screen mode and
shows a labyrinth picture. After pressing SPACE, the sample program shows movements of the
agent in the labyrinth and prints the current length of visiting path and an indication whether
or not the agent took the gold. After the agent finds an exit from the labyrinth, pressing Q turns
off full-screen terminal mode and quits the sample program.

You can specify a random seed by the first program argument. If the random seed is non-
negative, the agent operates adaptively (normally). If the random seed is negative, the agent
operates randomly. You can compare agent behavior and program output for these two modes
of program execution.

The special mode of program operation is the use of a profile assembler program helping the
agent to do its job more efficiently. The second program argument turns on that special mode
and specifies the name of a file with the profile assembler program.

Note: when using a custom profile assembler program, you may need to increase
the sizes of the pools of probabilities lists in normal form, that is, increase values
assigned to desc.profile_pool_env_sz and desc.profile_pool_opt_sz in the
function main.

The file samples/maze.asm in the package distribution contains the source text of a profile
assembler program for use with labyrinths that have up to 10 cells in width and height. This
assembler program actually provides tracking a precise location of the agent in the labyrinth—
the agent finds the gold at almost all labyrinth visits. The final visiting path shown in full-screen
terminal mode does not have vacillations taking place in the default mode of program operation.

Chapter 5: Assembler Programs 236

The content of that file is below.

; RELOCate.

;

; Analyze the outcome of an ‘mv’ instruction for performing the

; next move.

;

; l_repeat - jump label for repeating an attempt to perform the

; move if the ‘mv’ instruction moved the

; agent to an obstacle.

;

; new_row - new row index for the agent if the movement

; was successful.

; new_col - new column index for the agent if the movement

; was successful.

reloc macro l_repeat, new_row, new_col

l_g0 def g0_r##new_row##_c##new_col

l_g1 def g1_r##new_row##_c##new_col

joe 0, l_g0

joe 1, l_g0

joe 2, l_g0

joe 3, l_g0

joe 4, l_g0

joe 5, l_g0

joe 6, l_g0

joe 7, l_g0

joe 8, l_g0

joe 9, l_g0

joe 10, l_g0

joe 11, l_g0

joe 12, l_g0

joe 13, l_g0

joe 14, l_g0

joe 15, l_g0

joe 32, l_g1

joe 33, l_g1

joe 34, l_g1

joe 35, l_g1

joe 36, l_g1

joe 37, l_g1

joe 38, l_g1

joe 39, l_g1

joe 40, l_g1

joe 41, l_g1

joe 42, l_g1

joe 43, l_g1

joe 44, l_g1

joe 45, l_g1

joe 46, l_g1

joe 47, l_g1

jmp l_repeat

end macro

; Select a movement direction and analyze a movement outcome.

;

; is_gf - indication whether the agent has found gold:

; 1 = has found;

; 0 = not yet found.

;

Chapter 5: Assembler Programs 237

; row - current row index for the agent.

; col - current column index for the agent.

;

; row_north - new row index for the agent if it moves one step in

; the north direction.

;

; row_south - new row index for the agent if it moves one step in

; the south direction.

;

; col_west - new column index for the agent if it moves one step

; in the west direction.

;

; col_east - new column index for the agent if it moves one step

; in the east direction.

state macro is_gf, row, col,

row_north, row_south, col_west, col_east

repeat def u##__UNIQUE__

m_north def u##__UNIQUE__

m_east def u##__UNIQUE__

m_south def u##__UNIQUE__

g##is_gf##_r##row##_c##col:

repeat: stt

choice

case 0.25, m_north

case 0.25, m_east

case 0.25, m_south

end choice

mv west

reloc repeat, row, col_west

m_south:

mv south

reloc repeat, row_south, col

m_east: mv east

reloc repeat, row, col_east

m_north:

mv north

reloc repeat, row_north, col

end macro

; STates for a ROW.

;

; Movement selection states for a specific agent location row.

;

; is_gf - indication whether the agent has found gold:

; 1 = has found;

; 0 = not yet found.

;

; row - current row index for the agent.

;

; row_north - new row index for the agent if it moves one step in

; the north direction.

;

; row_south - new row index for the agent if it moves one step in

; the south direction.

Chapter 5: Assembler Programs 238

strow macro is_gf, row, row_north, row_south

state is_gf, row, 0, row_north, row_south, 9, 1

state is_gf, row, 1, row_north, row_south, 0, 2

state is_gf, row, 2, row_north, row_south, 1, 3

state is_gf, row, 3, row_north, row_south, 2, 4

state is_gf, row, 4, row_north, row_south, 3, 5

state is_gf, row, 5, row_north, row_south, 4, 6

state is_gf, row, 6, row_north, row_south, 5, 7

state is_gf, row, 7, row_north, row_south, 6, 8

state is_gf, row, 8, row_north, row_south, 7, 9

state is_gf, row, 9, row_north, row_south, 8, 0

end macro

; STates for all ROWS.

;

; Movement selection states for all agent location rows.

;

; is_gf - indication whether the agent has found gold:

; 1 = has found;

; 0 = not yet found.

strows macro is_gf

strow is_gf, 0, 9, 1

strow is_gf, 1, 0, 2

strow is_gf, 2, 1, 3

strow is_gf, 3, 2, 4

strow is_gf, 4, 3, 5

strow is_gf, 5, 4, 6

strow is_gf, 6, 5, 7

strow is_gf, 7, 6, 8

strow is_gf, 8, 7, 9

strow is_gf, 9, 8, 0

end macro

; Generate movement selection states for the case when the agent

; has not yet found gold and the case when the agent has

; found the gold.

strows 0

strows 1

The file samples/maze_asm.c in the package distribution provides the source code of the
sample program. A copy of that source code is below. The command make builds the sample
program if the configure script has configured QSMM to use the ncurses library. See the file
INSTALL in the root of the package distribution for information on the configure script.

#include <assert.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#if defined(HAVE_CURSES_H)

include <curses.h>

#elif defined(HAVE_NCURSES_CURSES_H)

include <ncurses/curses.h>

#endif

#include <qsmm/qsmm.h>

Chapter 5: Assembler Programs 239

#define NVISIT 200

#define NSTATE 512

#define MAX_X 8

#define MAX_Y 8

#define ENTRY_X 1

#define ENTRY_Y 8

#define CHK_FAIL(func, ...) \

do { \

int rc=func(__VA_ARGS__); \

if (rc<0) ERREXIT(#func ": %s", qsmm_err_str(rc)); \

} \

while (0)

#define ERREXIT(fmt, ...) \

do { \

fprintf(stderr,fmt "\n", ## __VA_ARGS__); \

goto Exit; \

} \

while (0)

enum direct_e {

DIRECT_NORTH=0, // move one step up

DIRECT_EAST =1, // move one step right

DIRECT_SOUTH=2, // move one step down

DIRECT_WEST =3 // move one step left

};

static char is_gold_found;

static int path_len_pass, n_gold_found=0, path_len_total=0;

static qsmm_prg_t prg_asm=0;

static qsmm_msglist_t msglist=0;

// Get the bitmask of allowed movement directions.

static unsigned char

get_percept(

const char **picture_pp,

int xx,

int yy

) {

unsigned char result=0;

const int col=xx*3+1, row=yy*2+1;

assert(picture_pp[row][col]==’ ’ && picture_pp[row][col+1]==’ ’);

assert((picture_pp[row-1][col]==’ ’ &&

picture_pp[row-1][col+1]==’ ’) ||

(picture_pp[row-1][col]!=’ ’ &&

picture_pp[row-1][col+1]!=’ ’));

assert((picture_pp[row+1][col]==’ ’ &&

picture_pp[row+1][col+1]==’ ’) ||

(picture_pp[row+1][col]!=’ ’ &&

picture_pp[row+1][col+1]!=’ ’));

if (picture_pp[row-1][col]==’ ’ && picture_pp[row-1][col+1]==’ ’)

result|=1 << DIRECT_NORTH;

if (picture_pp[row][col+2]==’ ’) result|=1 << DIRECT_EAST;

if (picture_pp[row+1][col]==’ ’ && picture_pp[row+1][col+1]==’ ’)

result|=1 << DIRECT_SOUTH;

if (picture_pp[row][col-1]==’ ’) result|=1 << DIRECT_WEST;

return result;

Chapter 5: Assembler Programs 240

}

// Make a movement in the labyrinth in a specified direction possibly

// showing the movement on the screen.

// Returns: 3 = movement resulted in exiting the labyrinth;

// 2 = movement resulted in taking the gold;

// 1 = movement made successfully;

// 0 = cannot make the movement because a new location cell of the

// agent is not empty.

static int

opaque_maze(

enum direct_e direct,

unsigned char *percept_p

) {

static const char *picture[]={

// 0 1 2 3 4 5 6 7 8

"+-----+--+--#..#--+--------+",

"| | | | |", // 0

"+--+ | | #--# | + + |",

"| | | | | | | |", // 1

"| +--+ | +--+ +--+ * *",

"| | | | | |", // 2

"+--+ +--+-----+ +--+ *--*",

"| | | | |", // 3

"| +--+ + + + | +--+ |",

"| | | | | |", // 4

"| +--+ +--+ | | +--+ |",

"| | | | | | |", // 5

"+--+ +--+--+ +--+-----+ |",

"| | | | |", // 6

"+--+ + | +--+ +--+ +--+",

"| | | | |", // 7

"| +--+ | +--+ +--+ +--+",

"| | | | |", // 8

"+--+..+--+-----+--+--------+"

};

static char is_gf=0;

static int path_len, visit=0, xx=-1, yy=-1;

char ss[128];

int col, row, result=1;

if (xx<0 || yy<0) {

if (visit==NVISIT-1) {

if (!initscr()) exit(2);

noecho();

for (row=0; row<=(MAX_Y+1)*2+1; row++)

mvaddstr(row,0,picture[row]);

row=(MAX_Y+1)*2+3;

mvaddstr(row,0,"Press [Space] to start moving");

while (getch()!=’ ’) ;

sprintf(ss,"%64s","");

mvaddstr(row,0,ss);

}

xx=ENTRY_X;

yy=ENTRY_Y;

path_len=0;

}

assert(xx>=0 && xx<=MAX_X);

assert(yy>=0 && yy<=MAX_Y);

unsigned char percept;

if (get_percept(picture,xx,yy) & (1 << direct)) {

col=xx*3+1;

row=yy*2+1;

switch (direct) {

Chapter 5: Assembler Programs 241

case DIRECT_NORTH: yy--; break;

case DIRECT_EAST: xx++; break;

case DIRECT_SOUTH: yy++; break;

case DIRECT_WEST: xx--; break;

default: assert(0);

}

percept=get_percept(picture,xx,yy);

path_len++;

if (visit==NVISIT-1) mvaddstr(row,col," ");

col=xx*3+1;

row=yy*2+1;

if (visit==NVISIT-1) {

int picture_w=strlen(picture[0]);

mvaddstr(row,col,"[]");

sprintf(ss," Gold found: %d",is_gf);

mvaddstr(1,picture_w+2,ss);

sprintf(ss,"Path length: %d",path_len);

mvaddstr(3,picture_w+2,ss);

move((MAX_Y+1)*2+3,0);

refresh();

usleep(125000);

}

if (picture[row-1][col-1]==’*’ && picture[row-1][col+2]==’*’ &&

picture[row+1][col-1]==’*’ && picture[row+1][col+2]==’*’) {

if (!is_gf) {

is_gf=1;

result=2;

}

}

else if (picture[row-1][col-1]==’#’ && picture[row-1][col+2]==’#’ &&

picture[row+1][col-1]==’#’ && picture[row+1][col+2]==’#’) {

is_gf=0;

result=3;

xx=-1;

yy=-1;

if (visit==NVISIT-1) {

row=(MAX_Y+1)*2+3;

mvaddstr(row,0,"Press [Q] to exit");

while (1) {

int key=getch();

if (key==’q’ || key==’Q’) break;

}

endwin();

}

else visit++;

}

}

else {

percept=get_percept(picture,xx,yy)+16;

result=0;

}

if (is_gf) percept+=32;

if (percept_p) *percept_p=percept;

return result;

}

static QSMM_INSTR_META_CLASS(mv) {

enum direct_e direct=0;

if (QSMM_HAS_INSTR_CLASS(qsmm_evt))

qsmm_get_eh_instr_param(qsmm,sizeof(direct),&direct);

switch (qsmm_evt) {

case QSMM_EVT_INSTR_CLASS_INIT: {

const char *ccp;

switch (direct) {

Chapter 5: Assembler Programs 242

case DIRECT_NORTH: ccp="north"; break;

case DIRECT_EAST: ccp="east"; break;

case DIRECT_SOUTH: ccp="south"; break;

case DIRECT_WEST: ccp="west"; break;

default: assert(0);

}

qsmm_set_eh_instr_param_str_f(qsmm,"%s",ccp);

qsmm_set_eh_noutcome(qsmm,64);

break;

}

case QSMM_EVT_ACTIVATE: {

unsigned char percept=0;

const int rc=opaque_maze(direct,&percept);

qsmm_time_delta(qsmm,1);

switch (rc) {

case 0:

case 1:

break;

case 2:

is_gold_found=1;

n_gold_found++;

break;

case 3:

if (is_gold_found) qsmm_spur_delta(qsmm,1,1);

qsmm_return_to_caller_node(qsmm);

break;

default:

assert(0);

}

if (rc!=3) {

if (rc) {

path_len_pass++;

path_len_total++;

}

qsmm_set_instr_outcome(qsmm,percept);

}

break;

}

}

return 0;

}

static QSMM_INSTR_CLASS_SET(walker) {

switch (qsmm_evt) {

case QSMM_EVT_ENT_INIT: {

enum direct_e direct;

direct=DIRECT_NORTH, QSMM_REG_INSTR_CLASS_PARAM(mv,direct);

direct=DIRECT_EAST, QSMM_REG_INSTR_CLASS_PARAM(mv,direct);

direct=DIRECT_SOUTH, QSMM_REG_INSTR_CLASS_PARAM(mv,direct);

direct=DIRECT_WEST, QSMM_REG_INSTR_CLASS_PARAM(mv,direct);

qsmm_sig_t nstate=0;

if (prg_asm)

qsmm_get_prg_nstate_v2(qsmm, __FUNCTION__, 0,

QSMM_EXCEPT_ALL, prg_asm, 0,

&nstate);

else nstate=NSTATE;

printf("nstate %d\n",nstate);

qsmm_set_nstate_max(qsmm,__FUNCTION__,nstate);

QSMM_NODE_CREATE(0);

break;

}

case QSMM_EVT_ENGINE_INIT:

if (prg_asm) qsmm_node_asm(qsmm,0,0,prg_asm,msglist);

break;

Chapter 5: Assembler Programs 243

case QSMM_EVT_NODE_ENTER: {

unsigned char percept=0;

is_gold_found=0;

opaque_maze(DIRECT_NORTH,&percept);

break;

}

}

return 0;

}

// Find a path to gold in the labyrinth and then to its exit possibly

// using a node probability profile specified by an assembler program.

int

main(

int argc,

char **argv

) {

int seed=0, exit_code=1;

qsmm_t qsmm=0;

qsmm_msglist_t msglist_dump=0;

if (argc>2) {

CHK_FAIL(qsmm_msglist_create,&msglist);

CHK_FAIL(qsmm_parse_asm_source_file, argv[2],

QSMM_PARSE_ASM_PREPROCESS, 0, 0, msglist, &prg_asm);

}

struct qsmm_desc_s desc;

memset(&desc,0,sizeof(desc));

desc.dont_use_instr_class_weights=1;

desc.is_large_env=1;

desc.is_large_opt=1;

desc.nspur=2;

desc.stack_sz_max=1;

desc.profile_pool_env_sz=2;

desc.profile_pool_opt_sz=2;

desc.compat=1;

desc.sparse_fill_max=0.2;

CHK_FAIL(qsmm_create,&desc,&qsmm);

QSMM_REG_INSTR_META_CLASS(qsmm,mv,0);

QSMM_REG_INSTR_CLASS_SET(qsmm,walker,0);

qsmm_engine_create(qsmm);

if (argc>1 && (seed=atoi(argv[1]))<0) {

qsmm_set_random(qsmm,1);

seed=-seed;

}

qsmm_rng_seed(qsmm_get_rng(qsmm),seed);

for (int visit=0; visit<NVISIT; visit++) {

path_len_pass=0;

qsmm_node_call_default(qsmm,0,0);

printf(

"visit %d: ngf %d, path_pass %d, path_total %d, ngf/path_total %.8f\n",

visit+1, n_gold_found, path_len_pass, path_len_total,

(double) n_gold_found/path_len_total);

}

exit_code=0;

Exit:

qsmm_prg_destroy(prg_asm);

qsmm_destroy(qsmm);

if (msglist) {

msglist_dump=msglist;

msglist=0;

CHK_FAIL(qsmm_msglist_dump,msglist_dump,0,"BUFFER",0,stderr);

}

244

qsmm_msglist_destroy(msglist_dump);

return exit_code;

}

Sample program output is below.
$./maze-asm -1

nstate 512

visit 1: ngf 0, path_pass 94, path_total 94, ngf/path_total 0.00000000

visit 2: ngf 0, path_pass 706, path_total 800, ngf/path_total 0.00000000

...

visit 101: ngf 19, path_pass 640, path_total 87374, ngf/path_total 0.00021746

visit 102: ngf 19, path_pass 962, path_total 88336, ngf/path_total 0.00021509

...

visit 199: ngf 37, path_pass 90, path_total 178714, ngf/path_total 0.00020703

visit 200: ngf 37, path_pass 726, path_total 179440, ngf/path_total 0.00020620

$./maze-asm 1

nstate 512

visit 1: ngf 0, path_pass 632, path_total 632, ngf/path_total 0.00000000

visit 2: ngf 1, path_pass 2712, path_total 3344, ngf/path_total 0.00029904

...

visit 101: ngf 84, path_pass 570, path_total 115834, ngf/path_total 0.00072518

visit 102: ngf 85, path_pass 290, path_total 116124, ngf/path_total 0.00073198

...

visit 199: ngf 182, path_pass 370, path_total 150890, ngf/path_total 0.00120618

visit 200: ngf 183, path_pass 360, path_total 151250, ngf/path_total 0.00120992

The above pieces of output show that the average amount of gold found per one move in the
labyrinth in the adaptive mode of program operation with random seed 1 and without using
the profile assembler program is about 6 times greater than in the random mode of program
operation.

$./maze-asm -1 maze.asm

nstate 200

visit 1: ngf 1, path_pass 3086, path_total 3086, ngf/path_total 0.00032404

visit 2: ngf 1, path_pass 274, path_total 3360, ngf/path_total 0.00029762

...

visit 100: ngf 17, path_pass 430, path_total 91868, ngf/path_total 0.00018505

visit 101: ngf 17, path_pass 768, path_total 92636, ngf/path_total 0.00018351

...

visit 199: ngf 43, path_pass 132, path_total 192766, ngf/path_total 0.00022307

visit 200: ngf 43, path_pass 118, path_total 192884, ngf/path_total 0.00022293

./maze-asm 1 maze.asm

nstate 200

visit 1: ngf 1, path_pass 3086, path_total 3086, ngf/path_total 0.00032404

visit 2: ngf 2, path_pass 52, path_total 3138, ngf/path_total 0.00063735

...

visit 100: ngf 100, path_pass 52, path_total 8234, ngf/path_total 0.01214477

visit 101: ngf 101, path_pass 52, path_total 8286, ngf/path_total 0.01218923

...

visit 199: ngf 199, path_pass 52, path_total 13382, ngf/path_total 0.01487072

visit 200: ngf 200, path_pass 52, path_total 13434, ngf/path_total 0.01488760

The above pieces of output show that the average amount of gold found per one move in
the labyrinth in the adaptive mode of program operation with random seed 1 and the use of
the profile assembler program is about 67 times greater than in the random mode of program
operation.

245

6 Miscellaneous Topics

This chapter covers secondary topics not covered in other chapters of this manual.

6.1 Random Number Generators

An actor uses a random number generator as a source of randomness to stochastically emit
output signals according to their probabilities.

A standard random number generator used in QSMM is actually a pseudo-random number
generator. By default, the GNU Scientific Library (http://www.gnu.org/software/gsl/
) provides the pseudo-random number generator. A developer can provide a custom random
number generator for using by QSMM. Such custom random number generator may actually be
a pseudo-random number generator or may provide real random numbers obtained using some
physical process.

Whereas using a random (not pseudo-random) number generator adds a sense of “free will”
to a system, improper application of the random number generator in the system might be
comparable with a brain injury. The selection of a method of interfacing a physical process with
a system via a random number generator might affect whether the system behaves as an integral
or separate part of the environment. Currently, QSMM might not support developing systems
behaving as integral parts of the environment.

6.1.1 Creating a Random Number Generator

A random number generator handle refers to a random number generator.

[Data type]qsmm_rng_t
This is a type for the handle of a random number generator. The handle is a pointer, so
variables of this type can be NULL. The functions qsmm_rng_create and qsmm_rng_create_

custom allocate a new handle. The function qsmm_rng_destroy frees an existing handle.

You can pass an allocated handle to API functions taking an argument of qsmm_rng_t type
until freeing the handle. You can also set an allocated handle as the value of rng field of
qsmm_actor_desc_s or qsmm_desc_s structure specifying the parameters of creating an actor
or multinode model respectively. The lifetime of an allocated handle should be longer than
the lifetime of an actor or multinode model.

The function qsmm_get_actor_rng returns the handle of a random number generator spec-
ified in the field rng of qsmm_actor_desc_s structure when creating an actor by the function
qsmm_actor_create or returns the handle of an instance of default random number generator
allocated automatically if that field was NULL. The function qsmm_get_rng returns the handle
of a random number generator specified in the field rng of qsmm_desc_s structure when creating
a multinode model by the function qsmm_create or returns the handle of an instance of default
random number generator allocated automatically if that field was NULL.

Use the following function to create a random number generator as an instance of default
random number generator.

[Function]int qsmm_rng_create (qsmm rng t *rng_p)
This function creates a random number generator and stores its newly allocated handle in
*rng p. The function creates either a random number generator with a type defined by a
user-supplied function qsmm_proxy_func_t and its parameter set by a call to the function
qsmm_set_rng_default (see Section 6.1.3 [Custom Random Number Generators], page 247)
or a random number generator with a standard type defined when configuring the package if
the user-supplied function not set.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

Chapter 6: Miscellaneous Topics 246

The function returns a non-negative value on success or a negative error code on failure in
creating a random number generator. Currently, the function can return the following error
codes.

QSMM_ERR_INVAL

The argument rng p is NULL.

QSMM_ERR_NOMEM

There was not enough memory to create a random number generator.

In default and recommended mode, the configure script configures the package to use a
pseudo-random number generator provided by the GNU Scientific Library (http://www.
gnu.org/software/gsl/) as a standard random number generator. In the other mode, the
configure script configures the package to use a pseudo-random number generator implemented
by the function rand from the standard C library. The latter mode does not require dependency
on the external library. See the file INSTALL in the root of the package distribution for how to
specify the latter mode for the configure script.

One of disadvantages of using a pseudo-random number generator implemented by rand is
that only one instance of this pseudo-random number generator exists, and different handles
actually refer to this single instance causing problems when seeding pseudo-random number
generators represented by different handles.

Use the function described below to create a random number generator based on a user-
supplied function.

[Function]int qsmm_rng_create_custom (qsmm proxy func t rng_func, void
*paramp, qsmm rng t *rng_p)

This function creates a random number generator based on a function rng func and its
parameter paramp and stores a newly allocated handle of this random number generator
in *rng p. The function rng func must implement a random number generator interface
described in Section 6.1.3 [Custom Random Number Generators], page 247.

The function returns a non-negative value on success or a negative error code on failure in
creating a random number generator. Currently, the function can return the following error
codes.

QSMM_ERR_INVAL

The argument rng p is NULL.

QSMM_ERR_NOMEM

There was not enough memory to create a random number generator.

Use the following function to destroy a random number generator.

[Function]void qsmm_rng_destroy (qsmm rng t rng)
This function destroys a random number generator specified by a handle rng. You must not
use the handle after the destruction of this random number generator. If rng is NULL, the
function has no effect.

An application program may only destroy random number generators it created explicitly by
the function qsmm_rng_create or qsmm_rng_create_custom. For example, if the application
program destroys a random number generator implicitly allocated for a multinode model on
its creation and returned by the function qsmm_get_rng, a memory error occurs later.

6.1.2 Generating Random Numbers

Use the following functions to generate uniformly distributed random numbers.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

Chapter 6: Miscellaneous Topics 247

[Function]int qsmm_rng_uniform_int (qsmm rng t rng, int nn)
This function returns a new integer random number uniformly distributed in the range 0
(inclusive) to nn (exclusive) produced using a random number generator rng. If nn is less
than 1, the function returns negative error code QSMM_ERR_INVAL.

[Function]double qsmm_rng_uniform (qsmm rng t rng)
This function returns a new random number uniformly distributed in the range 0 (inclusive)
to 1 (exclusive) produced using a random number generator rng.

[Function]double qsmm_rng_uniform_pos (qsmm rng t rng)
This function returns a new positive random number uniformly distributed in the range 0 to
1 (exclusive) produced using a random number generator rng.

Use the following function to seed a pseudo-random number generator.

[Function]void qsmm_rng_seed (qsmm rng t rng, int seed)
This function seeds a pseudo-random number generator rng using seed. A seed specifies a
stream of pseudo-random numbers produced by the generator. A random number generator
created on the basis of a user-supplied function might not support seeding.

6.1.3 Custom Random Number Generators

A user-supplied function qsmm_proxy_func_t and its parameter define a custom type of random
number generator. The function qsmm_rng_create_custom creates instances of custom random
number generators. You can set a custom type of random number generator as the default
type of random number generator. The function qsmm_rng_create creates the instances of a
default random number generator. The functions qsmm_actor_create and qsmm_create call
qsmm_rng_create if the field rng of qsmm_actor_desc_s or qsmm_desc_s structure is NULL.

Use the following functions to retrieve or set a user-supplied function qsmm_proxy_func_t

and its parameter defining the default type of random number generator.

[Function]void qsmm_get_rng_default (qsmm proxy func t *rng_func_p, void
**param_pp)

This function retrieves the default type of random number generator defined by a user-
supplied function qsmm_proxy_func_t and its parameter. If rng func p is not NULL, the
function sets *rng func p to a pointer to the user-supplied function. If the default random
number generator is a standard random number generator (with a type defined when con-
figuring the package), the function sets *rng func p to NULL. If param pp is not NULL, the
function sets *param pp to a user parameter of qsmm_proxy_func_t function.

[Function]void qsmm_set_rng_default (qsmm proxy func t rng_func, void
*paramp)

This function sets the default type of random number generator. A function rng func and
its parameter paramp define that type. If rng func is NULL, the function qsmm_set_rng_

default sets a standard random number generator (with a type defined when configuring
the package) as the default random number generator.

A function that along with its user parameter defines the type of a random number generator
has a prototype of an abstract proxy function. Future QSMM versions may use this abstract
proxy function to perform operations on other objects.

[Data type]qsmm_proxy_func_t
This is a type for the pointer to an abstract proxy function. The following declaration
corresponds to this type:

Chapter 6: Miscellaneous Topics 248

typedef int

(*qsmm_proxy_func_t)(

int cmd,

int in_sz,

int out_sz,

const void *in_p,

void *out_p,

void *paramp

);

The argument cmd specifies the identifier of a command—an operation the proxy function
shall perform. A buffer in p with length in sz bytes specifies the input parameters of this
command. The proxy function shall store or update in a buffer out p with length out sz bytes
the results of command invocation. The argument paramp is a user parameter specified when
setting the proxy function.

On successful completion, the proxy function shall return a non-negative value. On error,
the proxy function shall return a negative value. Specific interpretation of a returned value
depends on an object the function represents and an operation performed by the function.

Below there is a description of a random number generator interface for implementing by a
proxy function—possible cmd values, input command parameters, and the results of command
invocation.

[Macro]QSMM_RNG_CMD_CREATE
Create a random number generator. The proxy function shall store in a buffer out p the
pointer to an object representing the random number generator. The argument out sz is
always equal to sizeof(void *). For example, to return the pointer rng_state_p to an
allocated instance of a structure holding the state of a created random number generator,
write a line of code like this:

*((void **) out_p)=rng_state_p;

The proxy function can return negative error code QSMM_ERR_NOMEM indicating that there
was not enough memory to allocate an object representing the random number generator. In
this case, the function qsmm_rng_create or qsmm_rng_create_custom called to create the
random number generator returns this error code.

[Macro]QSMM_RNG_CMD_DESTROY
Destroy a random number generator. A buffer in p holds the pointer to an object representing
the random number generator. The argument in sz is always equal to sizeof(void *). For
example, to obtain the pointer rng_state_p to an allocated instance of a structure holding
the state of a random number generator for subsequent destruction of this instance, write
the following line of code:

rng_state_p=*((void **) in_p);

The proxy function shall return a non-negative value.

[Macro]QSMM_RNG_CMD_GENERATE
Generate a random number. A buffer in p holds the pointer to an object representing the ran-
dom number generator. The argument in sz is always equal to sizeof(void *). The proxy
function shall store in a buffer out p a generated random number uniformly distributed in the
range 0 (inclusive) to 1 (exclusive). The argument out sz is always equal to sizeof(double).
For example, to return generated random number rnd, write a line of code like this:

*((double **) out_p)=rnd;

The proxy function shall return a non-negative value.

Chapter 6: Miscellaneous Topics 249

[Macro]QSMM_RNG_CMD_SEED
Seed a pseudo-random number generator. A buffer in p holds an instance of qsmm_rng_
cmd_seed_in_s structure (see below) containing a random seed and the pointer to an object
representing the pseudo-random number generator. The function qsmm_rng_seed receives the
random seed as the second argument. The argument in sz is always equal to sizeof(struct

qsmm_rng_cmd_seed_in_s). To obtain seeding parameters, use lines of code like these:

const struct qsmm_rng_cmd_seed_in_s *const cmd_in_p=in_p;

rng_state_p=cmd_in_p->rng_object_p;

If the pseudo-random number generator does not support the seeding operation, the proxy
function can return negative error code QSMM_ERR_NOTSUP. However, the function qsmm_rng_

seed currently returns void and ignores this error code.

The following structure conveys the parameters of a seeding operation.

[Structure]qsmm_rng_cmd_seed_in_s
This structure passes the input parameters of an operation of seeding a pseudo-random
number generator. The structure contains the following fields.

[Field]int seed
A seed value.

[Field]void * rng_object_p
The pointer to an object representing the pseudo-random number generator.

An example proxy function implementing the random number generator interface is below.

#include <stdint.h>

#include <stdlib.h>

#include <qsmm/qsmm.h>

static int

rng_proxy(

int cmd,

int in_sz,

int out_sz,

const void *in_p,

void *out_p,

void *paramp

) {

uint32_t *seed_p;

switch (cmd) {

case QSMM_RNG_CMD_CREATE:

if (!(seed_p=malloc(sizeof(*seed_p)))) return QSMM_ERR_NOMEM;

*seed_p=1;

*((void **) out_p)=seed_p;

break;

case QSMM_RNG_CMD_DESTROY:

free(*((void **) in_p));

break;

case QSMM_RNG_CMD_GENERATE:

seed_p=*((void **) in_p);

*seed_p=*seed_p*1103515245+12345;

*((double *) out_p)=(*seed_p/65536)%32768/32768.0;

break;

Chapter 6: Miscellaneous Topics 250

case QSMM_RNG_CMD_SEED: {

const struct qsmm_rng_cmd_seed_in_s *const cmd_in_p=in_p;

seed_p=cmd_in_p->rng_object_p;

*seed_p=cmd_in_p->seed;

break;

}

}

return 0;

}

To set this proxy function as a default random number generator, write the line of code

qsmm_set_rng_default(&rng_proxy,0);

6.2 Ordinary and Sparse Vectors

A vector handle refers to an ordinary or sparse vector.

[Data type]qsmm_vec_t
This is a type for a vector handle. It is a pointer, so variables of this type can be NULL. The
function qsmm_get_actor_choice_sig_prob_vec returns the handle of a vector holding the
probabilities of emitting output signals by an actor. The function qsmm_vec_clone returns
the handle of a newly allocated copy of a vector. After using the copy, free its handle by the
function qsmm_vec_destroy.

Use the following function to get the number of accessible vector elements.

[Function]size_t qsmm_get_vec_npos (qsmm vec t vec)
This function returns the number of accessible elements in a vector vec. For an ordinary
vector, that number might be equal to the length of a vector segment containing elements
with set values. For a sparse vector, that number is equal to the number of elements with
set values. Normally, it is the number of non-zero elements in the sparse vector.

Use the following function to get the value of an element of a vector.

[Function]int qsmm_get_vec_elm_by_pos_d (qsmm vec t vec, size t pos, size t
*idx_p, double *val_p)

This function retrieves the index and value of an element of a vector vec by the access position
of this element. The argument pos specifies that access position. It must be less than the
number of accessible elements in the vector. If idx p is not NULL, the function sets *idx p to
the index of this element. If val p is not NULL, the function sets *val p to the value of this
element.

On success, the function returns a non-negative value. If the access position is greater than
or equal to a value returned by the function qsmm_get_vec_npos, the function qsmm_get_

vec_elm_by_pos_d returns negative error code QSMM_ERR_INVAL.

Use the following function to get the access position of an element of a vector by the index
of this element.

[Function]int qsmm_get_vec_pos_by_idx_v2 (qsmm vec t vec, int rez1, size t
idx, size t *pos_p)

This function retrieves the access position of an element of a vector vec by the index of this
element. The argument idx specifies that index. If pos p is not NULL, the function sets *pos p
to that access position. It is less than the number of accessible vector elements returned by
the function qsmm_get_vec_npos. The argument rez1 is for future use and must be equal to
0.

Chapter 6: Miscellaneous Topics 251

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument idx is greater than or equal to the number of vector dimensions.

QSMM_ERR_NOTFOUND

No such access position for a valid idx—the element at index idx is zero.

For example, to get the value of an element of a vector vec at index idx, you can use a block
of code like this:

int rc;

double val=0; // element value

size_t pos=0; // element access position

if ((rc=qsmm_get_vec_pos_by_idx_v2(vec,0,idx,&pos))>=0) {

rc=qsmm_get_vec_elm_by_pos_d(vec,pos,0,&val);

assert(rc>=0);

}

else assert(rc==QSMM_ERR_NOTFOUND);

Use the following function to create a copy of a vector.

[Function]int qsmm_vec_clone (qsmm vec t vec_src, qsmm vec t *vec_dst_p)
This function creates a copy of a vector vec src and stores the handle of this copy in
*vec dst p. The copy might occupy less memory compared to the original vector because
the function might only copy a segment of an ordinary vector containing elements with set
values.

The function returns a non-negative value on success or a negative error code on failure in
creating a copy of a vector. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument vec dst p is NULL.

QSMM_ERR_NOMEM

There was not enough memory to create a copy of vec src.

Use the following function to destroy a copy of a vector created by the function qsmm_vec_

clone.

[Function]void qsmm_vec_destroy (qsmm vec t vec)
This function destroys a vector specified by a handle vec. You must not use the vector handle
after destroying the vector. If vec is NULL, the function has no effect.

An application program may only destroy vectors it created by the function qsmm_vec_clone.
If the application program destroys a vector with a handle returned by the function qsmm_

get_actor_choice_sig_prob_vec, a memory error occurs later.

6.3 Messages and Message Lists

QSMM uses message lists to return error, warning, and note messages as part of a result of the
following operations:

– access to statistics storage;

– preprocessing the source text of an assembler program;

– parsing the source text of an assembler program;

– loading a memory representation of an assembler program into a node.

Chapter 6: Miscellaneous Topics 252

Besides that, you can use the Message List API to return lists of messages from functions you
develop.

A handle of qsmm_msglist_t type refers to a message list. A handle of qsmm_msg_t type
refers to an individual message. The function qsmm_msglist_create creates an empty message
list. You pass the empty message list to an API function that can fill it with messages. The
function qsmm_msglist_dump dumps all messages in a message list to a stream. After using the
message list, you destroy it by the function qsmm_msglist_destroy.

6.3.1 Creating Messages

A message list contains message objects. A message handle refers to an individual message
object.

[Data type]qsmm_msg_t
This is a type for a message handle. It is a pointer, so variables of this type can be NULL.
The functions qsmm_msg_create_f and qsmm_msg_create_fv allocate a new message handle.
The function qsmm_msg_destroy frees the handle of a message not added to a message list. If
a message is in a message list, clearing or destroying the message list frees the handle of this
message. You can pass an allocated message handle to API functions taking an argument of
qsmm_msg_t type until freeing the handle.

When creating a message object, you specify its message category using the following enu-
meration.

[Enumeration]qsmm_msg_e
This enumeration specifies the category of a message. That category affects labeling the
message in its text representation. The function qsmm_get_msglist_sz_type retrieves the
number of messages with a specific category contained in a message list. The enumeration
consists of the following elements.

QSMM_MSG_GENERAL

An uncategorized message. No category label precedes a message text.

QSMM_MSG_NOTE

A note message. The label ‘note: ’ precedes a message text.

QSMM_MSG_WARNING

A warning message. The label ‘warning: ’ precedes a message text.

QSMM_MSG_ERROR

An error message. The label ‘error: ’ precedes a message text.

QSMM_MSG_COUNT

The last element of this enumeration equal to the number of supported message
categories.

Use the following functions to create a message object with a specified message text.

[Function]int qsmm_msg_create_f (qsmm msg t *msg_p, enum qsmm msg e
msg_type, const char *fmt_p, ...)

[Function]int qsmm_msg_create_fv (qsmm msg t *msg_p, enum qsmm msg e
msg_type, const char *fmt_p, va list ap)

These functions create a message with a category msg type and store a newly allocated
message handle in *msg p if msg p is not NULL. If msg p is NULL, the functions destroy the
created message and report success.

The function qsmm_msg_create_f formats a message text according to the argument fmt p
and subsequent arguments interpreted as in the function printf. The function qsmm_msg_

create_fv formats a message text according to the arguments fmt p and ap interpreted as

Chapter 6: Miscellaneous Topics 253

in the function vprintf. If fmt p is NULL, the functions create an empty message. In this
case, the function qsmm_msg_create_fv ignores the argument ap.

The functions return a non-negative value on success or a negative error code on failure in
creating a message. Currently, the functions can return the following error codes.

QSMM_ERR_INVAL

The argument msg type is negative or greater than or equal to QSMM_MSG_COUNT.

QSMM_ERR_ILSEQ

Unable to convert the message text to a wide string according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to create the message.

Use the following functions to append text to an already existing message.

[Function]int qsmm_msg_append_f (qsmm msg t msg, int rez1, const char *fmt,
...)

[Function]int qsmm_msg_append_fv (qsmm msg t msg, int rez1, const char *fmt,
va list ap)

These functions append a formatted text to a message msg. The argument rez1 is for future
use and must be equal to 0.

The function qsmm_msg_append_f formats appended message text according to the argument
fmt and subsequent arguments interpreted as in the function printf. The function qsmm_

msg_append_fv formats appended message text according to the arguments fmt and ap
interpreted as in the function vprintf.

The functions return a non-negative value on success or a negative error code on failure.
Currently, the functions can return the following error codes.

QSMM_ERR_ILSEQ

Unable to convert the formatted text to a wide string according to a current
locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following function to create a copy of a message object.

[Function]int qsmm_msg_clone (qsmm msg t src, qsmm msg t *dst_p)
This function creates a copy of a message src and stores the handle of this copy in *dst p
if dst p is not NULL. If dst p is NULL, the function destroys the created copy and reports
success.

The function returns a non-negative value on success or negative error code QSMM_ERR_NOMEM
if there was not enough memory to create a message copy.

Use the following function to destroy a message object.

[Function]void qsmm_msg_destroy (qsmm msg t msg)
This function destroys a message specified by a handle msg. You must not use the message
handle after destroying the message. If msg is NULL, the function has no effect.

You must not use this function to destroy messages added to a message list. The function
qsmm_msglist_clear or qsmm_msglist_destroy destroys those messages when clearing or
destroying the message list.

Use the following function to get the category of a message.

Chapter 6: Miscellaneous Topics 254

[Function]enum qsmm_msg_e qsmm_get_msg_type (qsmm msg t msg)
This function returns the category of a message msg. The function qsmm_msg_create_f or
qsmm_msg_create_fv sets that category when creating the message.

A message can have a line number assigned. If the line number is positive, and the function
qsmm_msg_str or qsmm_msglist_dump (see Section 6.3.4 [Printing Messages], page 256) knows
a file name associated with the message, that function prepends this name and line number to
a message text. By default, a created message does not have a line number assigned.

[Function]int qsmm_set_msg_lineno (qsmm msg t msg, long lineno)
This function assigns line number lineno to a message msg.

If the function qsmm_msg_str or qsmm_msglist_dump knows a file name associated with the
message, and lineno is non-negative, that function prints this name before a message text.
If qsmm_msg_str or qsmm_msglist_dump knows the file name, and lineno is positive, that
function prints line number lineno after this name and before a message text.

If lineno is 0, qsmm_msg_str or qsmm_msglist_dump does not print a line number before a
message text. However, that function prints the file name there. Thus, special value 0 may
indicate that the message pertains to the entire file. If lineno is −1, the function does not
prepend the file name and line number to a message text.

The function qsmm_set_msg_lineno returns a non-negative value on success or a negative
error code on failure. Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument lineno is less than −1.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

6.3.2 Creating a Message List

A message list handle refers to a message list.

[Data type]qsmm_msglist_t
This is a type for a message list handle. It is a pointer, so variables of this type can be NULL.
The function qsmm_msglist_create allocates a new message list handle. The function qsmm_

msglist_destroy frees an existing message list handle. You can pass an allocated message
list handle to API functions taking an argument of qsmm_msglist_t type until freeing the
handle.

Use the following function to create an empty message list for passing it to a function that
can fill it with messages.

[Function]int qsmm_msglist_create (qsmm msglist t *msglist_p)
This function creates an empty message list and stores its newly allocated handle in *msglist p
if msglist p is not NULL. If msglist p is NULL, the function destroys the created message list
and reports success.

The function returns a non-negative value on success or negative error code QSMM_ERR_NOMEM
if there was not enough memory to create a message list.

Use the following function to destroy a message list and all the messages it contains.

[Function]void qsmm_msglist_destroy (qsmm msglist t msglist)
This function destroys a message list specified by a handle msglist. You must not use the
message list handle after destroying the message list. If msglist is NULL, the function has no
effect.

Chapter 6: Miscellaneous Topics 255

6.3.3 Adding Messages to a Message List

Use the following function to add a message to a message list.

[Function]int qsmm_msglist_add_msg (qsmm msglist t msglist, qsmm msg t
msg)

This function adds a message msg to a message list msglist. The message list becomes the
owner of this message. You must not add a message to multiple message lists.

After adding the message to the message list, you must not explicitly destroy the message
by the function qsmm_msg_destroy. The function qsmm_msglist_clear or qsmm_msglist_
destroy destroys the message automatically when clearing or destroying the message list.

The function qsmm_msglist_add_msg returns a non-negative value on success or negative
error code QSMM_ERR_NOMEM if there was not enough memory to perform the operation.

Use the following function to append to a message list the copies of all messages contained
in another message list.

[Function]int qsmm_msglist_extend (qsmm msglist t dst, qsmm msglist t src)
This function appends to the end of a message list dst the copies of all messages contained
in a message list src, in the same order.

The function returns a non-negative value on success or a negative error code on failure.
Currently, the function can return the following error codes.

QSMM_ERR_INVAL

The argument src or dst is NULL, or src is equal to dst.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

Use the following function to clear a message list.

[Function]void qsmm_msglist_clear (qsmm msglist t msglist)
This function removes all messages from a message list msglist and destroys them.

Use the following function to get the total number of messages contained in a message list.

[Function]size_t qsmm_get_msglist_sz (qsmm msglist t msglist)
This function returns the total number of messages contained in a message list msglist.

Use the following function to get the number of messages with a specific category contained
in a message list.

[Function]int qsmm_get_msglist_sz_type (qsmm msglist t msglist, enum
qsmm msg e msg_type, size t *sz_p)

This function retrieves the number of messages with a category msg type contained in a
message list msglist. If sz p is not NULL, the function sets *sz p to that number of messages.

If the message list contains at least one message with this category, the function returns a
positive value. If the message list does not contain messages with this category, the function
returns 0. If msg type is negative or greater than or equal to QSMM_MSG_COUNT, the function
returns negative error code QSMM_ERR_INVAL .

Use the following function to get a message contained in a message list.

[Function]qsmm_msg_t qsmm_get_msglist_msg (qsmm msglist t msglist, size t
idx)

This function returns the handle of a message contained in a message list msglist at index
idx. If idx is greater than or equal to the total number of messages held in the message list,
the function returns NULL.

Chapter 6: Miscellaneous Topics 256

6.3.4 Printing Messages

Use the following function to get a text representation of a message object.

[Function]int qsmm_msg_str (char *bufp, size t bufsz, qsmm msg t msg, struct
qsmm dump msg desc s *desc_p)

This function stores in a buffer bufp with size bufsz bytes a text representation of a message
msg. If desc p is not NULL, the function generates the text representation according to
parameters in *desc p. If desc p is NULL, the function generates the text representation
according to default parameters.

If desc p is not NULL, the function sets desc p->out_sz to the number of bytes required to
store the text representation not counting finalizing byte 0. That number does not depend
on bufsz. To determine the length of a text representation in this way, the function supports
passing 0 for both bufp and bufsz.

If bufsz is positive, the function always finalizes a string written to bufp with byte 0. If
the string and its finalizing byte 0 occupy more than bufsz bytes, the function truncates the
string. In this case, desc p->out_sz is greater than or equal to bufsz (if desc p is not NULL).

If the buffer is large enough to hold the text representation including its finalizing byte 0, the
function returns a positive value. If the buffer is smaller than needed, the function returns
0. On failure, the function returns a negative error code. Currently, the function can return
the following error codes.

QSMM_ERR_INVAL

The argument bufsz is positive, but bufp is NULL.

QSMM_ERR_ILSEQ

Unable to convert the message object to its text representation according to a
current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

The description of a structure for specifying the parameters of converting a message object
to its text representation is below. The structure has a field for storing the length of this
representation by the function qsmm_msg_str.

[Structure]qsmm_dump_msg_desc_s
This structure specifies input and output parameters of converting a message object to its
text representation. The structure contains the following fields.

[Field]char is_compile
If this field is not 0, the function qsmm_msg_str considers an application program that has
generated the message as a compiler (or assembler), or a process the application program
is carrying out as compiling (or assembling). In this case, if the message object contains
source location information specifying the name of a source file and a line number in it,
qsmm_msg_str does not prepend the text representation with the name of this application
program specified in the field prg_name_p of this structure.

If this field is 0, qsmm_msg_str always prepends an application program name to the text
representation provided that prg_name_p is not NULL.

By default, qsmm_msg_str considers the application program as a compiler, or a process
the application program is carrying out as compiling.

[Field]char do_print_type
If not 0, prepend to the text representation a message category defined by the macro
QSMM_MSG_NOTE, QSMM_MSG_WARNING, or QSMM_MSG_ERROR.

Chapter 6: Miscellaneous Topics 257

The function qsmm_msg_create_f or qsmm_msg_create_fv sets the category of a mes-
sage using the enumeration qsmm_msg_e when creating the message. The function qsmm_

get_msg_type returns the category of a message. See Section 6.3.1 [Creating Messages],
page 252, for more information about message categories.

By default, prepend a message category to the text representation.

[Field]const char * prg_name_p
The name of an application program that has generated the message. The field is_

compile of this structure and source location information in the message object determine
whether or not that name precedes the text representation. If the field prg_name_p is NULL,
the function qsmm_msg_str does not prepend an application program name to the text
representation.

The default value is NULL.

[Field]const char * fln_p
An associated file name if the message object does not have this file name in source location
information. If the message object has a line number, including special line number 0,
in the source location information (assigned by the function qsmm_set_msg_lineno), the
function qsmm_msg_str prepends the associated file name to the text representation.

This field can contain the name of a top-level source file for use with message objects
created while preprocessing the source text of an assembler program, parsing the source
text of an assembler program, or loading a memory representation of an assembler program
into a node. If such a message object has source location information specifying the name
of a source file and a line number in it, this source location information references the
source file directly or indirectly included in the top-level source file by the ‘include’
preprocessor directive. If the source location information specifies a line number but not
a source file name, this line number pertains to the top-level source file. In the latter case,
if this field is not NULL, qsmm_msg_str uses it for the name of that top-level source file
and prepends it to the text representation.

The default value of this field is NULL.

[Field]size_t out_sz
Output parameter. The number of bytes occupied by the text representation not counting
finalizing byte 0. That number does not depend on buffer size passed to qsmm_msg_str.

To improve compatibility with future versions of QSMM library, zero by the function memset

an instance of qsmm_dump_msg_desc_s structure before setting the fields of this instance passed
to the function qsmm_msg_str.

The function qsmm_msg_str converts user-created message objects to their text representa-
tions in formats listed below. A label corresponding to the category of a message specified when
creating the message object can precede a message text; see the description of do_print_type
field of qsmm_dump_msg_desc_s structure for more information.

message text

program name: message text

input file name: message text

input file name:line number: message text

program name: input file name: message text

program name:input file name:line number: message text

The text representations of message objects created when preprocessing the source text of
an assembler program, parsing the source text of an assembler program, or loading a memory
representation of an assembler program into a node may have other formats. For example,
the function qsmm_msg_str might prepend a stack of locations in assembler source files to an

Chapter 6: Miscellaneous Topics 258

error message generated while parsing the source text of an assembler program. The stack
might indicate the locations of ‘include’ preprocessor directives that included the content of an
assembler source file with a syntax error.

Use the following function to dump a message list to a stream.

[Function]int qsmm_msglist_dump (qsmm msglist t msglist, const char
*prg_name_p, const char *fln_p, unsigned int flags, FILE *filep)

This function dumps to a stream filep all messages contained in a message list msglist. The
argument prg name p specifies the name of an application program that has generated the
messages. The argument fln p specifies the name of a top-level file (usually input one)
associated with the messages. The argument flags can contain a bitmask defined by the
macro QSMM_MSG_DUMP_PRG_NAME_ALL.

If prg name p is not NULL, the function prepends the application program name prg name p
to messages without associated line numbers and to messages with associated line number
0. If prg name p is not NULL, and flags contain the bitmask QSMM_MSG_DUMP_PRG_NAME_ALL,
the function prepends the application program name to all messages.

If fln p is not NULL, the function prepends the top-level file name fln p to all messages with
associated line numbers, including line number 0, but without associated file names.

To obtain the text representations of message objects contained in the message list, this
function calls the function qsmm_msg_str. If after writing the text representation of a message
object to the stream the function ferror reports a stream error, the function qsmm_msglist_

dump aborts dumping the messages and reports success. A calling function can use ferror

to test for this stream error condition.

On success or stream error, qsmm_msglist_dump returns a non-negative value. On other
errors, this function returns a negative error code. Currently, the function can return the
following error codes.

QSMM_ERR_ILSEQ

Unable to convert a message object contained in the message list to a text rep-
resentation according to a current locale.

QSMM_ERR_NOMEM

There was not enough memory to perform the operation.

On these errors, the function aborts dumping remaining messages in the message list.

6.4 Exchanging Data Packets in a Multithreaded Program
[EXPERIMENTAL]

QSMM provides a simple mechanism for exchanging data packets in multithreaded programs.
This mechanism can be helpful in organizing the interaction of a system you develop with an
environment you model, each executing in a separate thread. Another possible use of this
mechanism is aggregating the results of parallel invocation of adaptive probabilistic mappings
to get more optimal and precise system behavior.

Part of QSMM API called Side API represents this mechanism—multiple sides can take part
in the interaction. The header file qsmm/side.h contains declarations and definitions for the
Side API.

The Side API is available if the configure script has configured the package to use the POSIX

threads API. See the file INSTALL in the root of the package distribution for information about
the configure script.

Chapter 6: Miscellaneous Topics 259

6.4.1 Registering Interaction Sides

Before exchanging data packets, an application program registers sides taking part in the inter-
action. A side handle refers to a registered interaction side.

[Data type]qsmm_side_t
This is a type for a side handle. It is a pointer, so variables of this type can be NULL. The
function qsmm_side_create allocates a new side handle. The function qsmm_side_destroy

frees an existing side handle. You can pass an allocated side handle to API functions taking
an argument of qsmm_side_t type until freeing the handle.

Use the following functions to register and unregister an interaction side.

[Function]int qsmm_side_create (const char *name_p, qsmm side t *side_p)
This function registers an interaction side named name p and stores a newly allocated side
handle in *side p if side p is not NULL. If side p is NULL, the function has no effect. The
name name p identifies the interaction side in the trace log of data packets exchange between
sides. If name p is not NULL, the function creates a copy of name p and stores the copy in
an internal structure.

The function returns a non-negative value on success or a negative error code on failure in
registering a side. Currently, the function can return the following error codes.

QSMM_ERR_PTHREAD

A POSIX threads API error.

QSMM_ERR_NOMEM

There was not enough memory to register a side.

[Function]void qsmm_side_destroy (qsmm side t side)
This function unregisters an interaction side specified by a handle side. You must not use
the side handle after unregistering the side. If side is NULL, the function has no effect.

Use the following function to get the name of an interaction side specified by its handle.

[Function]const char * qsmm_get_side_name (qsmm side t side)
This function returns the name of an interaction side specified when creating it. If the
interaction side does not have a name specified, the function returns NULL.

6.4.2 Exchanging Data Packets Between Sides

The following function sends a data packet from a side to another side.

[Function]int qsmm_side_send (qsmm side t side_from, qsmm side t side_to,
size t sz, const void *msgp)

This function sends a data packet occupying sz bytes and addressed by msgp from a side
side from to a side side to. The function appends the data packet to the end of the queue of
received data packets of side to. If another thread called the function qsmm_side_recv for
side to and is waiting for a data packet to receive, the thread resumes execution, and that
function returns the data packet just received.

On success, the function returns a non-negative value. If there was not enough memory to
perform the operation, the function returns negative error code QSMM_ERR_NOMEM.

The following function receives a data packet.

[Function]int qsmm_side_recv (qsmm side t side, size t sz, void *msgp)
This function retrieves a data packet from the queue of received data packets of side and
stores the data packet in a buffer msgp with size sz bytes. If sz is greater than the size of

Chapter 6: Miscellaneous Topics 260

this data packet, the function leaves the remaining content of msgp unchanged. If there is no
data packet to retrieve, the function blocks until another thread sends a data packet to side.

On success, the function returns a non-negative number of bytes occupied by a retrieved data
packet or INT_MAX if this number is greater than INT_MAX. If sz is less than the size of the
data packet in the queue, or if sz is positive, and msgp is NULL, the function returns negative
error code QSMM_ERR_INVAL.

Use the following macro to send a data packet from a side to another side.

[Macro]QSMM_SIDE_SEND (from, to, msg)
This macro sends a data packet stored in a variable msg from a side from to a side to. The
macro expands to:

qsmm_side_send((from), (to), sizeof(msg), &(msg))

The macro argument msg must be a variable and not a constant, as the macro takes the
address of that argument using ‘&’. For example, to send signal 1 from a side side_from to a
side side_to, use lines of code like these:

const qsmm_sig_t sig_out=1;

QSMM_SIDE_SEND(side_from,side_to,sig_out);

Use the following macro to receive a data packet.

[Macro]QSMM_SIDE_RECV (side, msgp)
This macro retrieves a data packet from the queue of received data packets of side and stores
the data packet in a variable *msgp. The macro expands to:

qsmm_side_recv((side), sizeof(*(msgp)), (msgp))

For example, to receive a signal sent to a side, use lines of code like these:

qsmm_sig_t sig_in=QSMM_SIG_INVALID;

QSMM_SIDE_RECV(side,&sig_in);

6.4.3 Tracing the Exchange of Data Packets

QSMM provides facilities for tracing events related to interaction sides. You can specify the types
of events dumped to a trace log using a bitmask defined as a subset of the following macros
merged by bitwise “or.”

[Macro]QSMM_SIDE_TRACE_API
Side API calls entry and exit. API functions with a side handle argument dump a function
name, the names and values of function arguments, and a returned value.

[Macro]QSMM_SIDE_TRACE_MSG
The contents of data packets sent from an interaction side to other interaction sides dumped
as byte arrays in hexadecimal notation.

Use the following functions to query or set a bitmask of types of events dumped to a trace
log.

[Function]unsigned int qsmm_get_side_trace_flags (qsmm side t side)
This function returns the bitmask of types of events dumped to the trace log of an interaction
side. The interaction side is the originator of those events. This function returns a bitmask
set by the function qsmm_set_side_trace_flags or a default bitmask (see a remark below)
if the latter function not yet called.

Chapter 6: Miscellaneous Topics 261

[Function]void qsmm_set_side_trace_flags (qsmm side t side, unsigned int
flags)

This function sets to flags the bitmask of types of events dumped to the trace log of an
interaction side. The interaction side is the originator of those events. The function does not
check whether the bitmask is correct.

The function qsmm_side_create initializes the bitmask of types of events dumped to a trace
log to QSMM_SIDE_TRACE_MSG.

An interaction side does not dump events to a trace log unless the side has an assigned stream
for the trace log. Use the following functions to get or set the stream.

[Function]FILE * qsmm_get_side_trace_stream (qsmm side t side)
This function returns a stream for the trace log of an interaction side. If the side does not
have the stream assigned, the function returns NULL.

[Function]void qsmm_set_side_trace_stream (qsmm side t side, FILE *filep)
This function sets to filep the stream for the trace log of an interaction side. The NULL stream
disables dumping log messages.

Use the following functions to dump a custom formatted message, for example, containing
additional information about a data packet sent or received.

[Function]void qsmm_side_trace_f (qsmm side t side, const char *fmt, ...)
[Function]void qsmm_side_trace_fv (qsmm side t side, const char *fmt, va list

ap)
These functions write a formatted message to the trace log of an interaction side. They
append the character ‘\n’ to the message and flush the stream buffer. If the trace log not
set, the functions have no effect. The meaning of fmt argument and subsequent arguments
of qsmm_side_trace_f function is the same as in the function printf. The meaning of fmt
and ap arguments of qsmm_side_trace_fv function is the same as in the function vprintf.

6.4.4 Error Handling

An interaction side can have an error handler assigned to it. The error handler is a function
called in the case of a failure in any Side API function that takes an argument of qsmm_side_t
type and can return an error code of int type. The default error handler of an interaction side
prints information on an occurred error to stderr and calls exit(2). If an interaction side does
not have an error handler assigned (including the default error handler), or an error handler
assigned to the interaction side does not terminate program execution and returns, a failed Side
API function returns a corresponding error code.

Use the following functions to query or set an error handler for an interaction side.

[Function]void qsmm_get_side_err_handler (qsmm side t side,
qsmm err handler func t *func_p, void **param_pp)

This function retrieves information on an error handler assigned to an interaction side. If
func p is not NULL, the function sets *func p to the pointer to the error handler function or to
NULL if the interaction side does not have the error handler function assigned. If param pp is
not NULL, the function sets *param pp to the user parameter of that error handler function.

[Function]void qsmm_set_side_err_handler (qsmm side t side,
qsmm err handler func t func, void *paramp)

This function assigns an error handler to an interaction side. The argument func specifies
an error handler function. The argument paramp specifies the user parameter of this error
handler function. If func is NULL, the interaction side does not use an error handler.

See Section 4.5 [Error Handling for a Multinode Model], page 172, for the description of
qsmm_err_handler_func_t type for an error handler function.

Chapter 6: Miscellaneous Topics 262

6.5 The Implementation of Functionality of STL map Template

QSMM contains the implementation of functionality of STL map and multimap templates. You
can use the implementation in your C programs to create mapping objects without the need to
rewrite the programs in C++ and potentially increase their complexity.

The behavior of the current implementation differs from the behavior of STL map and
multimap templates in the following:

• The function qsmm_map_erase corresponding to the method erase of map and multimap

templates may call a key comparison function for the key of a removed key-value pair,
so that key must be a valid object. Therefore, when removing a key-value pair from a
map or multi-map, you must uninitialize and/or destroy the key of this pair after calling
qsmm_map_erase rather than before calling it.

• The implementation of functionality of STL multimap template does not provide storing
key-value pairs with the same key in the order of their insertion into a multi-map.

The header file qsmm/map.h contains the declarations of datatypes and functions of the im-
plementation.

6.5.1 Creating Maps and Iterators

A map handle refers to a mapping object.

[Data type]qsmm_map_t
This is a type for a map handle referring to a mapping object supporting the functionality
of STL map or multimap template. The map handle is a pointer, so variables of this type
can be NULL. The functions qsmm_map_create, qsmm_map_create_sz, qsmm_map_multi_

create, and qsmm_map_multi_create_sz allocate a new map handle. The function qsmm_

map_destroy frees an existing map handle. You can pass an allocated map handle to API

functions taking an argument of qsmm_map_t type until freeing the handle.

There are two ways of dealing with keys and values in the key-value pairs of a mapping
object:

1. Keys and/or values stored in key-value pair objects are untyped pointers—you should al-
locate and deallocate memory blocks addressed by those untyped pointers. When the keys
and/or values are integer numbers, you can convert them to the standard intptr_t type
and store them as pointers without the need to perform memory allocation and deallocation.

2. The memory blocks of key-value pair objects include the contents of keys and/or values
removing overhead caused by allocating and deallocating memory blocks for keys and/or
values. You have to specify the size of each key and/or value when creating the mapping
object.

Use the following functions to create and destroy a mapping object.

[Function]qsmm_map_t qsmm_map_create (qsmm compar func t key_compar_func,
void *paramp)

[Function]qsmm_map_t qsmm_map_create_sz (int key_sz, int val_sz,
qsmm compar func t key_compar_func, void *paramp)

[Function]qsmm_map_t qsmm_map_multi_create (qsmm compar func t
key_compar_func, void *paramp)

[Function]qsmm_map_t qsmm_map_multi_create_sz (int key_sz, int val_sz,
qsmm compar func t key_compar_func, void *paramp)

These functions create a mapping object. The functions qsmm_map_create and qsmm_map_

create_sz create a mapping object supporting the functionality of STL map template, that is,
a mapping object that may not contain duplicate keys in key-value pairs. The functions qsmm_
map_multi_create and qsmm_map_multi_create_sz create a mapping object supporting the

Chapter 6: Miscellaneous Topics 263

functionality of STL multimap template, that is, a mapping object that may contain duplicate
keys in key-value pairs. However, as distinct from the STL multimap template, a mapping
object created by qsmm_map_multi_create or qsmm_map_multi_create_sz does not provide
storing key-value pairs with the same key in the order of their insertion into the mapping
object.

The argument key compar func specifies a comparison function for the keys of this mapping
object. The argument paramp specifies the user parameter of this comparison function.

The functions qsmm_map_create and qsmm_map_multi_create create a mapping object with
untyped pointers for its keys and values. The functions qsmm_map_create_sz and qsmm_map_

multi_create_sz create a mapping object containing keys with size key sz not equal to 0
and values with size val sz. If key sz is negative, the keys are untyped pointers. If key sz is
positive, each key has size key sz bytes. If val sz is negative, the values are untyped pointers.
If val sz is positive, each value has size val sz bytes. If val sz is 0, the mapping object cannot
store values corresponding to keys, that is, the mapping object is actually a set object, and
set elements are the keys of this mapping object.

The call qsmm_map_create(&compar,paramp) is equivalent to the call qsmm_map_create_
sz(-1,-1,&compar,paramp). The call qsmm_map_multi_create(&compar,paramp) is equiv-
alent to the call qsmm_map_multi_create_sz(-1,-1,&compar,paramp).

On success, the functions return a non-NULL map handle. If there was not enough memory
to create a mapping object, the functions return NULL.

[Function]void qsmm_map_destroy (qsmm map t mm)
This function destroys a mapping object specified by a handle mm. You must not use the
map handle after destroying the mapping object. If mm is NULL, the function has no effect. If
keys and/or values in the key-value pairs of this mapping object contain untyped pointers to
allocated objects, you must free them before destroying the mapping object. If the memory
blocks of key-value pairs of this mapping object contain the memory blocks of keys and/or
values that require special uninitialization, you must uninitialize them before destroying the
mapping object.

When creating a mapping object, you provide a function for comparing the keys of this
mapping object and a user parameter for this function. The mapping object contains key-value
pairs sorted in ascending order of keys. A description of a type for the pointer to the comparison
function is below.

[Data type]qsmm_compar_func_t
This is a type for the pointer to a key comparison function. The following declaration
corresponds to this type:

typedef int

(*qsmm_compar_func_t)(

const void *o1p,

const void *o2p,

void *paramp

);

The key comparison function shall compare two keys addressed by the arguments o1p and
o2p and return a positive value if the first key is greater than the second key, a negative value
if the first key is less than the second key, or 0 if the keys are equal. The argument paramp is a
user parameter specified when creating a mapping object with this key comparison function.

Use the following functions to obtain the pointer to a key comparison function and the user
parameter of this comparison function specified when creating a mapping object.

Chapter 6: Miscellaneous Topics 264

[Function]qsmm_compar_func_t qsmm_map_key_compar_func (qsmm map t mm)
This function returns the pointer to a key comparison function specified when creating a
mapping object mm.

[Function]void * qsmm_map_key_compar_param (qsmm map t mm)
This function returns the user parameter of a key comparison function specified when creating
a mapping object mm.

Use the following functions to obtain the size of each key and value specified when creating
a mapping object.

[Function]int qsmm_map_key_sz (qsmm map t mm)
This function returns the size of a key in each key-value pair of a mapping object mm. If a
returned value is positive, it is the number of bytes occupied by the key in the memory block
of a key-value pair object. If a returned value is negative, the keys are untyped pointers. The
function does not return 0.

[Function]int qsmm_map_val_sz (qsmm map t mm)
This function returns the size of a value in each key-value pair of a mapping object mm. If a
returned value is positive, it is the number of bytes occupied by the value in the memory block
of a key-value pair object. If a returned value is negative, the values are untyped pointers.
If a returned value is 0, the mapping object cannot store values corresponding to keys, that
is, the mapping object is actually a set object, and set elements are the keys of this mapping
object.

Map iterators provide access to key-value pairs of mapping objects. An iterator handle refers
to a map iterator.

[Data type]qsmm_iter_t
This is a type for an iterator handle. It is a pointer, so variables of this type can be NULL.

The functions qsmm_map_iter_create and qsmm_map_multi_iter_create allocate a new
iterator handle. An iterator handle allocated by qsmm_map_iter_create is for using with
mapping objects created by the functions qsmm_map_create and qsmm_map_create_sz. An
iterator handle allocated by qsmm_map_multi_iter_create is for using with mapping objects
created by the functions qsmm_map_multi_create and qsmm_map_multi_create_sz.

The function qsmm_map_iter_destroy frees an existing iterator handle. You can pass an
allocated iterator handle to API functions taking an argument of qsmm_iter_t type until
freeing the handle.

Use the following functions to create and destroy a map iterator.

[Function]qsmm_iter_t qsmm_map_iter_create ()
This function creates an iterator for using with mapping objects supporting the functionality
of STL map template. On success, the function returns a non-NULL iterator handle. If there
was not enough memory to create an iterator, the function returns NULL.

[Function]qsmm_iter_t qsmm_map_multi_iter_create ()
This function creates an iterator for using with mapping objects supporting the functionality
of STL multimap template. On success, the function returns a non-NULL iterator handle. If
there was not enough memory to create an iterator, the function returns NULL.

[Function]void qsmm_map_iter_destroy (qsmm iter t iter)
This function destroys a map iterator specified by a handle iter. You must not use the iterator
handle after destroying the map iterator. If iter is NULL, the function has no effect.

Chapter 6: Miscellaneous Topics 265

6.5.2 Operations on Maps

Basic operations on mapping objects correspond to methods of STL map and multimap templates.

[Function]size_t qsmm_map_size (qsmm map t mm)
This function returns the number of key-value pairs contained in a mapping object mm. The
function corresponds to the method size of STL map and multimap templates.

[Function]int qsmm_map_is_empty (qsmm map t mm)
This function returns a positive value if a mapping object mm does not contain key-value
pairs, or zero if it does. The function never returns negative values. It corresponds to the
method empty of STL map and multimap templates.

[Function]int qsmm_map_assign (qsmm map t dst, qsmm map t src)
This function copies all key-value pairs of a mapping object src to a mapping object dst.
The function discards all key-value pairs contained in the mapping object dst before the
copying. Either the functions qsmm_map_create and qsmm_map_create_sz or the functions
qsmm_map_multi_create and qsmm_map_multi_create_sz must have created the mapping
objects src and dst. Both mapping objects must have the same pointer to the key comparison
function and its user parameter.

If keys and/or values stored in key-value pair objects are untyped pointers, the function
copies or discards those pointers rather than memory blocks addressed by them. If the
memory blocks of key-value pair objects contain the memory blocks of keys and/or values,
the function copies or discards them.

The function qsmm_map_assign corresponds to operator= of STL map and multimap tem-
plates. The function returns a non-negative value on success or a negative value on out of
memory error.

[Function]int qsmm_map_insert (qsmm map t mm, void *keyp, void *valp,
qsmm iter t result_loc)

This function inserts a key-value pair in a mapping object mm. The argument keyp specifies
the key of this pair. The argument valp specifies the value of this pair.

If keys and/or values stored in key-value pair objects are untyped pointers, the function
inserts an untyped pointer keyp and/or valp in the mapping object. If the memory blocks of
key-value pair objects contain the memory blocks of keys and/or values, the function copies
a memory block addressed by keyp and/or valp to an inserted key-value pair object. If the
memory blocks of key-value pair objects contain the memory blocks of values, and valp is
NULL, the function initializes the memory block of a value in the key-value pair object with
zero bytes.

If the function qsmm_map_create or qsmm_map_create_sz created the mapping object, then it
cannot contain duplicate keys. A comparison function specified when creating the mapping
object determines the uniqueness of keys. When adding a new key-value pair with a key
already contained in the mapping object, the new key-value pair replaces an old key-value
pair. Replacing the old pair may cause a memory leak if the pair contains pointers to allocated
memory blocks. If the function qsmm_map_multi_create or qsmm_map_multi_create_sz

created the mapping object, then it can contain multiple key-value pairs with the same key.

If result loc is not NULL, after successful function completion, an iterator result loc addresses
a new key-value pair inserted in the mapping object. The type of this iterator must agree
with the type of the mapping object. Calling the function with a non-NULL result loc is useful
when the memory blocks of key-value pair objects contain the memory blocks of values, and
valp is NULL. In this case, the call qsmm_map_iter_val(result_loc) returns a pointer to
the memory block of a value preinitialized with zero bytes for setting the value.

Chapter 6: Miscellaneous Topics 266

This function corresponds to the method insert of STL map and multimap templates. The
function returns a non-negative value on success or a negative value on out of memory error.

[Function]void qsmm_map_clear (qsmm map t mm)
This function removes all key-value pairs from a mapping object mm. The function does not
deallocate memory blocks addressed by pointers in the keys and/or values of key-value pairs.
The function corresponds to the method clear of STL map and multimap templates.

[Function]void qsmm_map_find (qsmm map t mm, const void *keyp, qsmm iter t
result)

This function finds in a mapping object mm a key-value pair that has a key equal to keyp. If
the function qsmm_map_multi_create or qsmm_map_multi_create_sz created the mapping
object, the function qsmm_map_find finds in the mapping object the first key-value pair that
has a key equal to keyp. A comparison function specified when creating the mapping object
tests the equality of keys. The function qsmm_map_find corresponds to the method find of
STL map and multimap templates.

After function completion, an iterator result addresses a key-value pair found. If the key-
value pair not found, the iterator addresses a location just after the last key-value pair in the
mapping object. An iterator type must agree with a mapping object type.

[Function]void qsmm_map_lower_bound (qsmm map t mm, const void *keyp,
qsmm iter t result)

This function finds in a mapping object mm the first key-value pair that has a key greater
than or equal to keyp. The function corresponds to the method lower_bound of STL map

and multimap templates.

After function completion, an iterator result addresses a key-value pair found. If the key-
value pair not found, the iterator addresses a location just after the last key-value pair in the
mapping object. An iterator type must agree with a mapping object type.

[Function]void qsmm_map_upper_bound (qsmm map t mm, const void *keyp,
qsmm iter t result)

This function finds in a mapping object mm the first key-value pair that has a key greater
than keyp. The function corresponds to the method upper_bound of STL map and multimap

templates.

After function completion, an iterator result addresses a key-value pair found. If the key-
value pair not found, the iterator addresses a location just after the last key-value pair in the
mapping object. An iterator type must agree with a mapping object type.

[Function]void qsmm_map_erase (qsmm map t mm, qsmm iter t where)
This function removes from a mapping object mm a key-value pair addressed by an iterator
where. The function does not deallocate memory blocks addressed by pointers in the key
and/or value of this key-value pair. The function corresponds to the method erase of STL
map and multimap templates.

Note: when removing a key-value pair from a mapping object, you must uninitial-
ize and/or destroy the key of this pair after calling the function qsmm_map_erase

rather than before calling it, because, in the current implementation, qsmm_map_
erase may call a key comparison function for the key of this key-value pair, and
that key must be a valid object.

6.5.3 Operations on Iterators

Map iterators support the following operations.

Chapter 6: Miscellaneous Topics 267

[Function]int qsmm_map_iter_is_end (qsmm map t mm, qsmm iter t iter)
This function returns a positive value if an iterator iter is a forward (normal) iterator ad-
dressing a location just after the last key-value pair in a mapping object mm, or if the iterator
is a reverse iterator addressing a location just before the first key-value pair in the mapping
object, or returns 0 otherwise. The function never returns negative values.

[Function]int qsmm_map_iter_are_equal (qsmm iter t iter1, qsmm iter t
iter2)

This function returns a positive value if iterators iter1 and iter2 address the same location
in a mapping object, or returns 0 otherwise. The function never returns negative values.

[Function]void qsmm_map_iter_begin (qsmm map t mm, qsmm iter t result)
This function retrieves the location of the first key-value pair in a mapping object mm. After
function completion, an iterator result addresses that key-value pair. If the mapping object
does not contain key-value pairs, the iterator addresses a location commonly designated as a
location just after the last key-value pair in the mapping object. An iterator type must agree
with a mapping object type. The function corresponds to the method begin of STL map and
multimap templates.

[Function]void qsmm_map_iter_end (qsmm map t mm, qsmm iter t result)
This function makes an iterator result address a location just after the last key-value pair
in a mapping object mm. An iterator type must agree with a mapping object type. The
function corresponds to the method end of STL map and multimap templates.

[Function]void qsmm_map_iter_rbegin (qsmm map t mm, qsmm iter t result)
This function sets an iterator result to be a reverse iterator addressing the last key-value
pair (in ascending order of keys) in a mapping object mm. If the mapping object does not
contain key-value pairs, the iterator addresses a location commonly designated as a location
just before the first key-value pair in the mapping object. An iterator type must agree with
a mapping object type. The function corresponds to the method rbegin of STL map and
multimap templates.

[Function]void qsmm_map_iter_rend (qsmm map t mm, qsmm iter t result)
This function sets an iterator result to be a reverse iterator addressing a location just before
the first key-value pair in a mapping object mm. An iterator type must agree with a map-
ping object type. The function corresponds to the method rend of STL map and multimap

templates.

[Function]void qsmm_map_iter_next (qsmm iter t iter)
This function makes an iterator iter address the next key-value pair in a mapping object. If
the iterator is a forward (normal) iterator, it addresses the next key-value pair in ascending
order of keys. If the iterator is a reverse iterator, it addresses the next key-value pair in
descending order of keys (i.e. the previous key-value pair in ascending order of keys).

[Function]void qsmm_map_iter_prev (qsmm iter t iter)
This function makes an iterator iter address the previous key-value pair in a mapping object.
If the iterator is a forward (normal) iterator, it addresses the previous key-value pair in
ascending order of keys (i.e. the next key-value pair in descending order of keys). If the
iterator is a reverse iterator, it addresses the previous key-value pair in descending order of
keys (i.e. the next key-value pair in ascending order of keys).

[Function]void qsmm_map_iter_assign (qsmm iter t dst, qsmm iter t src)
This function makes an iterator dst address the same location as an iterator src. The function
also copies from src to dst an indication whether an iterator is forward (normal) or reverse one.
Either the function qsmm_map_iter_create or the function qsmm_map_multi_iter_create

must have created both iterators.

268

[Function]void qsmm_map_iter_set_val (qsmm iter t iter, void *valp)
This function sets to valp the value of a key-value pair addressed by an iterator iter and
discards an old value. If values stored in key-value pair objects are untyped pointers, the
function sets the untyped pointer equal to valp. If the memory blocks of key-value pair
objects contain the memory blocks of values, the function copies a memory block addressed
by valp to the key-value pair object.

[Function]void * qsmm_map_iter_key (qsmm iter t iter)
This function returns the key of a key-value pair addressed by an iterator iter. If keys stored
in key-value pair objects are untyped pointers, the function returns such untyped pointer. If
the memory blocks of key-value pair objects contain the memory blocks of keys, the function
returns a pointer to the memory block of a key.

[Function]void * qsmm_map_iter_val (qsmm iter t iter)
This function returns the value of a key-value pair addressed by an iterator iter. If values
stored in key-value pair objects are untyped pointers, the function returns such untyped
pointer. If the memory blocks of key-value pair objects contain the memory blocks of values,
the function returns a pointer to the memory block of a value.

269

7 Example Programs

This chapter describes example programs demonstrating the use of core QSMM functionality
and methods. This manual does not include the source code of these example programs. The
source code is available in the directory samples in the package distribution. The command
make install does not install the example programs.

7.1 pic-guess

This program reduces the actor algorithm to a simple method of finding values for a set of
boolean variables to maximize an objective function depending on those variables.

The program uncovers the bitmap of letter ‘A’, ‘B’, ‘C’, ‘D’, or ‘E’ by generating a trial bitmap
and passing it to an opaque function returning a measure of similarity between the trial bitmap
and the bitmaps of these letters hard-coded into the program. The opaque function also returns
a flag indicating whether the trial bitmap is equal to one of the five letter bitmaps. If it is so,
program execution finishes. All bitmaps have size 8x8.

The measure of similarity between a trial bitmap and the five letter bitmaps is equal to the
maximum measure of similarity among the measures of similarity between the trial bitmap and
each letter bitmap. The measure of similarity between a trial bitmap and a letter bitmap is the
number of equal bits at the same positions in these two bitmaps divided by 64 and multiplied
by a predefined weight for the letter bitmap. You pass those five predefined weights on the
command line. The program should detect a bitmap with a maximum predefined weight by a
minimum number of trials (steps).

Spur accumulated by the actor is equal to ln x, where x is the measure of similarity between
last trial bitmap and the five letter bitmaps. The actor uses ey as the relative probability of an
output signal, where y is a spur increment over a cycle type. The row and column of a bit in
a trial bitmap specify an action choice state. Every action choice state has two output signals
specifying possible values of a bit—the presence or absence of a dot at that position. Every trial
(step) consists of generating bits for all positions in the trial bitmap, calculating the measure of
similarity for the trial bitmap, and updating the spur according to that measure.

The command line has the format

./pic-guess weight_A weight_B weight_C weight_D weight_E seed

where weight A, ..., weight E are predefined weights for the bitmaps of letters ‘A’, ..., ‘E’, and
seed is a random seed. If the random seed is non-negative, the actor operates adaptively,
otherwise it operates randomly.

For example, when calling the program using the command line

./pic-guess 0.8 0.8 0.85 0.8 0.8 seed

where seed is in the range 1 to 20, the program correctly uncovers the letter ‘C’ in 18 of 20 runs.

For example, the call

./pic-guess 0.8 0.8 0.85 0.8 0.8 20

results in the output

Chapter 7: Example Programs 270

X X X X X X

X X X X X X X X

X X

X X

X X

X X

X X X X X X X X

X X X X X X

Step: 746

Press [Q] to exit

where 746 is the number of trial bitmaps generated to detect the bitmap of letter ‘C’.

The file samples/pic_guess.c in the package distribution contains the source code of this
example program. The command make builds the example program if the configure script has
configured QSMM to use the ncurses library. See the file INSTALL in the root of the package
distribution for information on the configure script.

7.2 test

This program demonstrates basic features of algorithms used in QSMM. The paper “An Ap-
proach to Optimal Action Generation for a System that Interacts with the Environment” de-
scribes them. Starting from QSMM version 1.16, the package distribution does not include that
paper, because despite being informative, the paper contains serious mistakes, which are not
fixed yet. You can access the paper in its current state from the project home page mentioned
in Section 1.5 [Obtaining QSMM], page 9.

The program performs interaction between a system and an environment represented by a
deterministic finite automaton. The system is either homogeneous or consists of two subsystems,
where the first subsystem identifies a current environment state, and the second subsystem
generates an adaptive action based on the current state. The program can read the description
of a deterministic finite automaton representing the environment from a file specified by a
program argument or generate the automaton randomly on the fly.

The files test.c, eemat.h, eemat.c, findcyc_ee.h, and findcyc_ee.c in the subdirectory
samples in the root of the package distribution contain the source code of this example program.

The Format of an Automaton File

A text file describes a deterministic finite automaton representing an environment. An example
of this text file is below:

Chapter 7: Example Programs 271

Non-empty line #1

Non-empty line #2

...

Non-empty line #n

2 5 3 0

1 0 0 0 0

1/3 2/4

2/1 1/2

0/4 1/0

The parser of an automaton file ignores all lines before the first empty line. The first line
after that empty line has the format

number_of_input_signals number_of_output_signals number_of_states initial_state_index

The indices of signals and states start from 0.

The second line after the empty line contains floating-point numbers specifying spur incre-
ments for all output signals. Those increments take place when the automaton emits corre-
sponding output signals.

Starting from the third line after the empty line, there go the descriptions of transitions
between states on receiving input signals. The third line corresponds to transitions from state
0, the fourth—from state 1, the fifth—from state 2, and so on. Each line contains number pairs
corresponding to input signals. The first pair corresponds to input signal 0, the second—to
input signal 1, the third—to input signal 2, and so on. Each pair has the format

target_state/output_signal

and specifies a transition from a source state to a target state with emitting an output signal
on receiving an input signal.

Generating Random Automatons

Use the following command to generate a random deterministic finite automaton:
$./test -o out_file -i random_seed [-C VAL] num_in_sig num_out_sig num_states

This command creates a file out file containing the description of a deterministic finite au-
tomaton produced using seed random seed. The automaton has specified numbers of input
signals, output signals, and states. If a random seed not specified, the program uses a standard
fixed random seed. The first output signal has spur increment 1, and all other output signals
have spur increment 0.

If the program receives the option -C VAL, and VAL is not 0, the automaton has its state
graph connected. If VAL is positive, the automaton has not more than VAL cycles in the graph.
In this case, the program finds the best cycle in the graph. Continuous repeating the best cycle
supplies the maximum amount of spur to the system. If VAL is relatively small, the program
may not generate the automaton at one push. If an attempt to generate the automaton fails,
the program prints a warning message and makes another attempt. If VAL is relatively large,
an attempt to generate the automaton may take a long time, so the impression can be that the
program has hung.

The special option argument VAL=‘c’ makes the program provide state graph connectivity
and find the best cycle in the graph using an algorithm analogous to Viterbi one. The special
option argument VAL=‘cs’ makes the program provide state graph connectivity, simplify the
state graph by a method also used when VAL is positive, and find the best cycle in the graph
by an algorithm analogous to Viterbi one.

The program writes a random seed value to comment lines before the first empty line in
out file. If the option -C VAL has a non-zero VAL, the program also writes to those comment
lines information on the best cycle in the state graph:

Chapter 7: Example Programs 272

– best cycle length as the number of cycle steps;

– an increment in spur the system receives on repeating the best cycle;

– average spur increment per step of the best cycle;

– a list of steps of the best cycle; a description of each step contains a step index stp, an
automaton state index stt, an input signal inp received when the automaton was in this
state, an output signal out emitted, and a spur increment spr corresponding to the output
signal.

Performing the Interaction

Use the following command to run a test of algorithm efficiency consisting of num passes passes
with a new random deterministic finite automaton that has specified numbers of input signals,
output signals, and states generated at each pass:

$./test -t num_passes [-C VAL] [additional options] \

num_in_sig num_out_sig num_states

On passing the option -C VAL with a non-zero VAL, the program provides connectivity for
generated automaton state graphs and finds best cycles in them. An example of a test log
printed by the command is below:

$./test -t10 -Ccs 20 20 20

DFA inputs: 20

DFA outputs: 20

DFA states: 20

Input signals: dfa-state

Passes: 10

Steps per pass: 10000

Large: off

R. prob. type: 1

N-gram length: 1

Algorithms v.: 0

K*temp.: 1.000000000000000E+00

Max. cycles: -2

Random seed: 0

pass earned random maximal cl % efr % efa

---- ------------ ---------- ------------ -- -------- -------

1 5821.000 331.000 7500.000 4 1758.610 76.580

2 5826.000 441.000 10000.000 2 1321.088 56.334

3 5656.000 359.000 6666.667 3 1575.487 83.977

4 6443.000 414.000 10000.000 2 1556.280 62.894

5 7075.000 462.000 10000.000 2 1531.385 69.333

6 5949.000 329.000 7142.857 7 1808.207 82.479

7 4272.000 281.000 6666.667 3 1520.285 62.499

8 8781.000 411.000 10000.000 2 2136.496 87.288

9 8144.000 648.000 10000.000 2 1256.790 80.154

10 4671.000 270.000 6000.000 5 1730.000 76.806

TOTL 62638.000 3946.000 83976.190 3 1587.380 73.337

stddev efr: 253.554

stddev efa: 10.486

The log begins with a description of test modes used followed by a table, where each row
corresponds to a test pass, followed by a summary row. The columns of this table have the
following meaning:

pass A test pass index. In the summary row—‘TOTL’.

earned The amount of spur the system received during interaction with the automaton
according to the algorithm. In the summary row—the sum of values in the column.

Chapter 7: Example Programs 273

random The amount of spur the system received during random interaction with the au-
tomaton when the system was equiprobably selecting output signals from a set of
allowed signals. In the summary row—the sum of values in the column.

maximal The amount of spur the system would receive during the most optimal interaction
with the automaton. The program calculates this amount on passing the option -C

VAL with a non-zero VAL. Otherwise, the amount is equal to the number of steps
in a test pass. In the summary row—the sum of values in the column.

cl Best cycle length. The program calculates this length on passing the option -C VAL

with a non-zero VAL. Otherwise, the length is equal to 0. In the summary row—the
average length of best cycles for all test passes.

% efr Relative efficiency equal to earned
random

· 100%. For the summary row, the formula uses
the variables from that row.

% efa Actual efficiency equal to earned−random
maximal−random

· 100%. For the summary row, the formula
uses the variables from that row.

At the end of the log, the program prints a standard deviation of values in the column ‘%
efr’ and a standard deviation of values in the column ‘% efa’.

Running Multiple Test Passes for a Single Automaton

Use the following command to run a specific number of test passes for an automaton defined in
FILE using the format described in [The Format of an Automaton File], page 270:

$./test -t num_passes [-C VAL] [additional options] -f FILE

The program verifies the connectivity of an automaton state graph. If VAL is positive, the
program also verifies that the number of cycles in the graph is less than or equal to VAL. If VAL
is not 0, the program prepends the test log with information on the best cycle in the automaton
state graph as described in [Generating Random Automatons], page 271.

Options Common for Both System Types

Below there is a description of program options applicable to both system types: a homogeneous
system and a system comprised of two subsystems, where the first subsystem is an environment
state identification subsystem, and the second subsystem is an action emission subsystem.

-C, --ncycle-max=VAL

Parameters related to automaton state graphs: state connectivity, simplification,
limiting the number of cycles, and best cycle search. In the description of test
modes—‘Max. cycles’. Supported option arguments:

0 Do not provide the state connectivity, do not perform the simplification,
do not limit the number of cycles in the graph, and do not find the best
cycle.

>0 Provide the state connectivity, perform the simplification, limit the
number of cycles in the graph by VAL, and find the best cycle.

“c” Provide the state connectivity and find the best cycle by an algorithm
analogous to Viterbi one. In the description of test modes—‘Max.
cycles: −1’.

“cs” Provide the state connectivity, perform the simplification, and find the
best cycle by an algorithm analogous to Viterbi one. In the description
of test modes—‘Max. cycles: −2’.

The simplification of an automaton state graph consists in replacing transitions
from (source) states to other states with transitions to the same (source) states on

Chapter 7: Example Programs 274

condition that resulting transitions do not yield positive spur increments, and each
replacement does not break the connectivity of this graph.

On searching the best cycle in the state graph, the program prints in the table
column ‘maximal’ the maximum amount of spur the system would receive during
the most optimal interaction with the automaton.

-f FILE A file with an automaton definition. In the description of test modes—‘Automaton
file’.

-i, --seed=INT

A seed to initialize the pseudo-random number generator. The default value is 0.
In the description of test modes—‘Random seed’.

--kt=FLOAT

The temperature (multiplied by some constant) of the homogeneous system or the
temperature of the environment state identification subsystem and action emission
subsystem. The default value is 1. In the description of test modes—‘K*temp.’.

-n, --nstep-pass=INT

The number of steps of interaction with a deterministic finite automaton at each
test pass. The automaton receives an input signal and emits an output signal in
each step. The default value is 10000. In the description of test modes—‘Steps per

pass’.

-o FILE A file to write program output to instead of stdout.

-S, --storage=flat|map

A statistics storage type for the system:

‘flat’ Use preallocated storage with presumably large size but quick access to
data elements. It is the default mode when possible.

‘map’ Use dynamically allocated storage with presumably small size but slower
access to data elements. The implementation of functionality of STL map

template provides backing storage.

-t, --test=INT

Perform the test a specified number of passes. This option turns on testing mode.
On passing the option -f FILE, the program uses a supplied automaton for all
test passes. Otherwise, at each test pass, the program generates a new random
automaton with the number of input signals, output signals, and states defined by
arguments at the end of command line. In the description of test modes—‘Passes’.

The Case of a Homogeneous System

A system interacting with an automaton is homogeneous unless the program receives the option
-s INT. For this kind of a system, the program supports the following special list of options:

-c, --compat=0|1|2

A compatibility level of algorithms assigned to the field compat of qsmm_actor_
desc_s structure. In the description of test modes—‘Algorithms v.’.

-I, --input=dfa-state|dfa-out

The type of informational signals for the system:

‘dfa-state’
automaton states (default mode);

‘dfa-out’ automaton output signals.

In the description of test modes—‘Input signals’.

Chapter 7: Example Programs 275

-l, --ngram-length=INT

The length of a system state n-gram. The default value is 1. If the type of infor-
mational signals for the system is ‘dfa-out’, n-gram length 2 may lead to better
efficiency. In the description of test modes—‘N-gram length’.

-L, --large[=INT]

Use a large actor with a specified tree arity. The default value is 2. In the description
of test modes—‘Large’ and ‘Tree arity’.

-P, --relprob-type=0|1|2|3

The type of a function returning the relative probability of an output signal:

‘0’ QSMM_RELPROB_USER1 without a helper function provided;

‘1’ QSMM_RELPROB_BUILTIN1 (default mode);

‘2’ QSMM_RELPROB_BUILTIN2;

‘3’ QSMM_RELPROB_BUILTIN3.

In the description of test modes—‘R. prob. type’.

The Case of a System Comprised of Two Subsystems

If the program receives the option -s INT specifying the number of tracked environment states,
the system interacting with an automaton representing an environment consists of two subsys-
tems, where the first subsystem identifies a current environment state, and the second subsystem
generates an adaptive action based on the current state. For the interaction with an automaton
to be efficient, the number of interaction steps in each test pass should be much greater than
in the case of a homogeneous system. In this mode of operation, the program supports the
following special list of options:

--kt-env=FLOAT

The temperature (multiplied by some constant) of the environment state identifica-
tion subsystem. The default value is 1. In the description of test modes—‘K*temp.
env.’.

--kt-opt=FLOAT

The temperature (multiplied by some constant) of the action emission subsystem.
The default value is 1. In the description of test modes—‘K*temp. opt.’.

-s, --nstate=INT

The number of tracked environment states. To achieve better efficiency, specify that
number twice or more times greater than the number of states in the deterministic
finite automaton representing an environment. In the description of test modes—
‘Tracked states’.

How to Reproduce Plots Represented in the Paper

The root of the package distribution contains the subdirectory scripts with bash scripts de-
scribed below. The command make install does not install these scripts.

qsmm-test-multi.sh

A script for collecting data for the plots of dependency of actual efficiency of inter-
action with deterministic finite automatons on the number of steps in a test pass
for the case of a system comprised of two subsystems. The paper “An Approach
to Optimal Action Generation for a System that Interacts with the Environment”
accessible from the project home page includes such plots. This script runs the test
program in a loop producing a new file with test results and incrementing the num-
ber of steps in a test pass for each subsequent iteration. The script fills a directory

Chapter 7: Example Programs 276

specified by a script argument with files containing test results. The name of each
file is the number of steps in each test pass used when running the test program.

qsmm-mk-plot-dataset.sh

A script for generating a dataset to create a plot by the program gnuplot (http://
gnuplot.sourceforge.net/). The script processes a directory with test result
files generated by the qsmm-test-multi.sh script and prints to stdout a dataset
containing two columns: the number of steps in a test pass and corresponding actual
efficiency (in percents) of interaction with deterministic finite automatons.

The method of reproducing a plot of dependency of actual efficiency of interaction with
automatons on the number of steps in a test pass consists of the following stages:

1. Choose a new or empty directory out dir to store files with test results for a selected test
mode.

2. Run multiple tests in a selected mode using the qsmm-test-multi.sh script to populate
out dir with test result files. The name of each file in out dir is the number of steps in each
test pass used when running the test program. Invoke the script using the command line

$./qsmm-test-multi.sh -d out_dir [-C VAL] \

[additional options] num_in_sig num_out_sig num_states

For one-letter options, a space after an option letter is obligatory. The script only supports
the case of a system comprised of two subsystems and passing additional options -C VAL,
-s num_model_states, and -t num_passes to the test program. On omitting the option
-s, the script uses num states multiplied by two for num model states. Options controlling
the numbers of steps in test passes are the following:

--ni=INT The initial number of steps in test passes. This is the name of the first file
written to out dir. The default value is 100.

--nf=INT The final number of steps in test passes. This is the name of the last file written
to out dir. The default value is 100000.

--nd=INT An increment in the number of steps in test passes for each subsequent invoca-
tion of test program to create the next file in out dir. This increment can be
negative, in which case the argument of --ni option should be greater than the
argument of --nf option. You can use such negative value for the second of two
simultaneous runs of this script on a dual-core processor to reduce computing
time twice. The default value is 100.

3. Extract a dataset for the gnuplot (or another) program from files in out dir. The qsmm-mk-
plot-dataset.sh script performs this extraction. That script prints the coordinates of
points for the plot to stdout. The script supports the options --ni, --nf, and --nd to
determine the names of files to read from out dir. Invoke the script using the command
line

$./qsmm-mk-plot-dataset.sh [options] out_dir | tee data_set_file

4. Process the dataset by the gnuplot program to draw the plot with data points and a
regression line. The file scripts/gnuplot.script contains a sample gnuplot script to
perform this task. You may wish to draw the plot or obtain a function for the regression
line by a different program.

Note: created plots shall slightly differ from the plots represented in the paper
“An Approach to Optimal Action Generation for a System that Interacts with the
Environment” because of corrections made to the initial algorithm implementation.

http://gnuplot.sourceforge.net/
http://gnuplot.sourceforge.net/

Chapter 7: Example Programs 277

7.3 topdown

This program is a probabilistic adaptive top-down parser. It processes a token sequence from
left to right multiple times to synthesize a grammar based on a template grammar supplied in
regular expression format. The token sequence consists of parse units immediately following one
another, where each parse unit corresponds to an expansion of the start nonterminal symbol
of the template grammar. The synthesis method is iterative determinization of the template
grammar.

The parser can dump a PCFG (Probabilistic Context-Free Grammar) converted from a tem-
plate regular expression grammar, a learned PCFG, a learned regular expression grammar, token
sequences consumed for its nonterminal symbols, and a predicted token sequence for the learned
grammar. See Section 8.1 [pcfg-generate-seq], page 318, for the description of a program that
generates a token sequence according to a specified PCFG. See Section 8.2 [pcfg-predict-eval],
page 319, for the description of a program that tests the accuracy of grammar synthesis by
comparing the number of correctly predicted tokens with the maximum number of correctly
predicted tokens estimated for a PCFG and a token sequence generated for this PCFG.

The parser internally generates adaptive assembler routines for the nonterminal symbols of
the template grammar. Those assembler routines parse token sequences for corresponding non-
terminal symbols and increment the frequencies of PCFG productions generated for the template
grammar. Changing the frequencies of productions results in changing the spur. An assembler
routine calls other assembler routines for nested nonterminal symbols. See Section 8.5.2 [Assem-
bler Instruction Set], page 329, for the description of an instruction set used in the assembler
routines. See Section 8.5.3 [Assembler Program Structure], page 331, for the description of their
building blocks.

See Section 8.3 [mk-rg-vit.sh], page 325, for the description of a script that generates a
template grammar for dividing a text into words. This template grammar provides one-level
segmenting a token sequence for probabilistic parsing.

Note: because of inefficient memory consumption by QSMM, the parser supports
only simple template grammars.

The programs pcfg-reach, rege-asm, and rege-test described in Chapter 8 [Auxiliary
Programs], page 318, help in testing the parser and understanding how it works.

The files topdown.c, coverage.h, coverage.c, gram_pcfg.h, gram_pcfg.c, gram_

rege.h, gram_rege.c, least_sq.h, least_sq.c, mat_norm.h, mat_norm.c, pcfg_base.h,
pcfg_base.c, pcfg_subset.h, pcfg_subset.c, rege_ast.h, rege_ast.c, rege_first.h,
rege_first.c, rege_prg.h, and rege_prg.c in the subdirectory samples in the root of the
package distribution contain parser source code.

7.3.1 Template Grammar Format

A template grammar consists of productions. Every production ends with ‘;’. The left-hand
side of a production is a nonterminal symbol. The right-hand side of a production is normally
a regular expression containing nonterminal symbols, terminal symbols, terminal symbol place-
holders ‘.’, and terminal symbol classes. If specific terminal symbols or terminal symbol classes
do not act as look-ahead symbols, the parser treats them as ‘.’.

Empty lines and extra spaces between the tokens of a template grammar do not affect its
interpretation. The template grammar can contain end-of-line comments starting with ‘//’ and
comments enclosed in ‘/*’ and ‘*/’.

Warning: if a template grammar is expandable to the empty sequence, the parser
may get into an infinite loop.

General Production Format

A normal grammar production has the format

Chapter 7: Example Programs 278

LHS: RHS ;

where LHS is a nonterminal symbol, and RHS is a regular expression for this nonterminal symbol.
LHS in the first production is a start nonterminal symbol. Nonterminal symbols beginning with
‘_’ are for internal use by the parser.

RHS can contain nonterminal symbols, terminal symbols, inclusive terminal symbol classes,
exclusive terminal symbol classes, ‘.’, subexpressions quantified by ‘?’ or ‘*’, alternatives sepa-
rated by ‘|’, or subexpressions grouped by ‘(’ and ‘)’.

Warning: if a subexpression quantified by ‘*’ is expandable to the empty sequence,
the parser may get into an infinite loop.

Terminal symbols are string literals enclosed in double quotes, for example: "a", "Beta",
"foo bar", "2+x". The character ‘\’ escapes the characters ‘\’ and ‘"’ in string literals.

An inclusive terminal symbol class has the format

[TERM1 ... TERMn]

where TERM1, ..., TERMn are terminal symbols, and represents any terminal symbol enclosed
between ‘[’ and ‘]’. Example: ["Beta" "foo bar" "2+x"].

An exclusive terminal symbol class has the format

[^ TERM1 ... TERMn]

where TERM1, ..., TERMn are terminal symbols, and represents a terminal symbol different
from terminal symbols enclosed between ‘[’ and ‘]’. Example: [^ "a" "2+x"].

Note: if the quantifier ‘?’ or ‘*’ follows a sequence of terminal symbols, terminal
symbol classes, or ‘.’, a quantified subexpression is the entire sequence rather than
its last element. For example, the notation ‘. . . ["a" "Beta"]?’ means that
the quantified subexpression is ‘. . . ["a" "Beta"]’. To relate ‘?’ only to ["a"

"Beta"], use the notation ‘. . . (["a" "Beta"]?)’ or ‘. . . (["a" "Beta"])?’.

Tail FIRST Set Consistency — General Case

In topdown, the tail FIRST set of a nonterminal symbol are terminal symbols following this
nonterminal symbol in its expansions. The tail FIRST set of a nonterminal symbol should be
consistent for all occurrences of this nonterminal symbol in the right-hand sides of productions.
For example, the following grammar has an inconsistent tail FIRST set of ‘C’:

cat >inconsist_tail_first_1.rg <<EOF

S: "c" C "a"

| [^ "c"] C "b"

;

C: . ;

EOF

The command topdown inconsist_tail_first_1.rg prints the following warnings:

1: warning: FIRST set after the nonterminal symbol ‘C’ != its tail FIRST set

2: warning: FIRST set after the nonterminal symbol ‘C’ != its tail FIRST set

1: note: nonterminal symbol ‘S’ is at the left hand side of this production

These warnings mean that the FIRST set ["a"] after the occurrence of ‘C’ at line 1 is
different from the FIRST set ["b"] after the occurrence of ‘C’ at line 2. The consistent
grammar would be:

S: "c" C ["a" "b"]

| [^ "c"] C ["a" "b"]

;

C: . ;

Tail FIRST Set Consistency — Initial Nonterminal Symbol

Chapter 7: Example Programs 279

The tail FIRST set of a start nonterminal symbol is its FIRST set. The following grammar
has an inconsistent tail FIRST set of ‘C’ too:

cat >inconsist_tail_first_2.rg <<EOF

S: "c" C ["a" "b"]

| [^ "c"] C

;

C: . ;

EOF

The command topdown inconsist_tail_first_2.rg prints the following warning:
1: warning: FIRST set after the nonterminal symbol ‘C’ != its tail FIRST set

1: note: nonterminal symbol ‘S’ is at the left hand side of this production

This warning means that the FIRST set ["a" "b"] after the occurrence of ‘C’ at line 1 is
different from the FIRST set . (union of ["c"] and [^ "c"]) after the occurrence of ‘C’ at
line 2. The consistent grammar would be:

S: "c" C .

| [^ "c"] C

;

C: . ;

Terminal Symbol Grouping

The parser treats a sequence of terminal symbols, terminal symbol classes, or ‘.’ in the right-
hand side of a production as a single unit. For example, the sequence ‘.’ in the grammar

cat >term_grp_1.rg <<EOF

S: ;

EOF

is a single unit. A learned PCFG represented below contains a single generated nonterminal
symbol for the entire unit. See [Learned PCFG], page 289, for the description of --qp option.

$ topdown --qp term_grp_1.rg - <<< ’a b c d a b c d a b’

S: _S_1T5 // 3

;

_S_1T5: "a" "b" "c" "d" "a" [0.50000000] // 1 0.50000000

| "b" "c" "d" "a" "b" [0.50000000] // 1 0.50000000

; // 2

Use ‘(’ and ‘)’ to split a sequence of terminal symbols, terminal symbol classes, or ‘.’ into
multiple units, for example:

cat >term_grp_2.rg <<EOF

S: (. . .) (. .) ;

EOF

A learned PCFG contains a generated nonterminal symbol for each grouped subsequence:
$ topdown --qp term_grp_2.rg - <<< ’a b c d a b c d a b’

S: _S_1T3 _S_2T2 // 3

;

_S_1T3: "a" "b" "c" [0.50000000] // 1 0.50000000

| "b" "c" "d" [0.50000000] // 1 0.50000000

; // 2

_S_2T2: "d" "a" [0.50000000] // 1 0.50000000

| "a" "b" [0.50000000] // 1 0.35000000

; // 2

It is generally preferable to use longer sequences of terminal symbols, terminal symbol classes,
or ‘.’, as those sequences capture more relations between sequence elements.

Chapter 7: Example Programs 280

Shallow Production Copies

To define a production for a nonterminal symbol LHS as the regular expression of a previously
defined nonterminal symbol NONT, use the notation

LHS = NONT ;

For example, the grammar
S: A B ;

A: C C . ;

B = A ;

C: . . ;

is equivalent to
S: A B ;

A: C C . ;

B: C C . ;

C: . . ;

The script mk-rg-vit.sh described in Section 8.3 [mk-rg-vit.sh], page 325, creates shallow
production copies in this way to reduce the size of a generated grammar.

Common Terminal Symbol Segments

A name followed by ‘:’ can precede a sequence of terminal symbols, terminal symbol classes,
or ‘.’. The name denotes a common terminal symbol segment. A template grammar can
contain multiple common terminal symbol segments with the same name provided that all those
segments have the same number of elements. A learned PCFG includes productions for common
terminal symbol segments with their names acting as nonterminal symbols at the left-hand sides
of productions.

Common terminal symbol segments are useful for iterative grammar determinization, where
ordinary nonterminal symbols do not work. Let us suppose we need to learn a grammar for a
terminal symbol sequence generated using the following test PCFG:

cat >common_segm.pcfg <<EOF

S: A B

| B A

;

A: "a" "a" ;

B: "b" "b" "b" ;

EOF

Using the following template grammar with ordinary nonterminal symbols does not work
because the parser preserves terminal symbol coverage for choice alternatives in the template
grammar:

cat >common_segm_1.rg <<EOF

S: A B

| B A

;

A: . .

| . .

;

B: . . .

| . . .

;

EOF

For the above template grammar, the parser produces a determinized grammar that does
not add useful information. See Section 8.1 [pcfg-generate-seq], page 318, for the description of

Chapter 7: Example Programs 281

pcfg-generate-seq program. See Section 7.3.4 [Iterative Determinization], page 294, for the
description of --od=FILE option of topdown program and how to learn a grammar by deter-
minization.

$ pcfg-generate-seq -i1 -n1000 -o common_segm.seq common_segm.pcfg

$ # generate a terminal symbol sequence with 1000 elements for the test

$ # PCFG using random seed 1

$

$ topdown -i1 --od=common_segm_1-det.rg common_segm_1.rg common_segm.seq

$ # iteratively learn a deterministic regular expression grammar using

$ # random seed 1

$

$ cat common_segm_1-det.rg

S: A B

| B A

;

A: "a" .

| "b" .

;

B: "a" . .

| "b" . .

;

A determinized grammar becomes useful for the following template grammar with common
terminal symbol segments:

cat >common_segm_2.rg <<EOF

S: (a1: . . | a2: . .) (b1: . . . | b2: . . .)

| (b1: . . . | b2: . . .) (a1: . . | a2: . .)

;

EOF

In this case, a produced determinized grammar provides a correct learned PCFG. See [Learned
PCFG], page 289, for the description of --qp option. See Section 7.3.4 [Iterative Determiniza-
tion], page 294, for the description of --simplify option.

$ topdown -i1 --od=common_segm_2-det.rg common_segm_2.rg common_segm.seq

$ # iteratively learn a deterministic regular expression grammar using

$ # random seed 1

$

$ cat cat common_segm_2-det.rg

S: a2: "a" . (b1: "b" . .

| b2: "a" . .

)

| b1: "b" . . (a1: "b" .

| a2: "a" .

)

;

$ topdown --qp --simplify common_segm_2-det.rg common_segm.seq

$ # print a simplified PCFG produced by parsing the test terminal

$ # symbol sequence using the deterministic regular

$ # expression grammar

$

S: a2 b1 [0.54500000] // 109

| b1 a2 [0.45500000] // 91

; // 200

a2: "a" "a" // 200 0.97168699

;

b1: "b" "b" "b" // 200 0.94736764

;

Chapter 7: Example Programs 282

Disabling Branches

In the current implementation, the parser performs iterative grammar determinization by gen-
erating a simpler regular expression grammar at each iteration and parsing a training terminal
symbol sequence using this grammar. The parser accumulates the frequencies of PCFG produc-
tions for all iterations. To perform this accumulation, PCFGs for regular expression grammars at
all iterations must have the same productions except for productions representing terminal sym-
bol sequences. To preserve the structure of PCFGs for generated regular expression grammars,
the latter grammars contain all control transfer branches from the template regular expression
grammar with disabled control transfer branches beginning with the empty terminal symbol
class ‘[]’.

The option --ode=FILE turns on dumping a determinized regular expression grammar possi-
bly containing ‘[]’ to a FILE. See Section 7.3.4 [Iterative Determinization], page 294, for more
information. The following example uses the files common_segm_2.rg and common_segm.seq

from [Common Terminal Symbol Segments], page 280:
$ topdown -i1 --ode=common_segm_2-dete.rg common_segm_2.rg common_segm.seq

$ cat common_segm_2-dete.rg

S: (a1: [] .

| a2: "a" .

) (b1: "b" . .

| b2: "a" . .

)

| (b1: "b" . .

| b2: [] . .

) (a1: "b" .

| a2: "a" .

)

;

Branch Probabilities

The parser has limited capabilities for specifying branch probabilities in a template grammar
to improve grammar synthesis. A large actor for the environment state identification engine
uses binary Huffman trees to select output signals, so the parser implicitly adjusts those branch
probabilities to be equal to 2-i, where i is a natural number. To specify a branch probability,
put ‘[PROB]’ at the beginning of a branch, where PROB is a relative probability, for example:

S: [6] . .

| [3] . . .

| [1]

;

This example is equivalent to:
S: [0.5] . .

| [0.25] . . .

| [0.25]

;

Similarly, the probabilities of two branches, including those for ‘?’ and ‘*’ quantifiers, are
always equal to 0.5.

Either all or none branches for ‘|’ alternatives must have probabilities assigned.

Put-back Terminal Symbols

To use a sequence of terminal symbols, terminal symbol classes, or ‘.’ for analyzing look-ahead
symbols without consuming them, finalize the sequence with ‘~’.

Warning: the parser analyzes look-ahead symbols by actually consuming them and
putting them back—rewinding the current position in a training terminal symbol
sequence by the number of consumed terminal symbols. This methods leads to
improper parse probability calculation and decreased quality of grammar synthesis.

Chapter 7: Example Programs 283

For example, the following template grammar deterministically parses sequences "a" "a"

possibly intermediated with single occurrences of "b" "b" "b":

cat >lookup.rg <<EOF

S: . . ("a"~

| "b" . .

)

;

EOF

A learned PCFG contains nonterminal symbols with the suffix ‘~’ for put-back terminal
symbol sequences. See [Learned PCFG], page 289, for the description of --qp option. See
Section 7.3.4 [Iterative Determinization], page 294, for the description of --simplify option.

$ topdown --qp --simplify lookup.rg - <<< ’a a a a b b b’

S: "a" "a" _S_2C // 3

;

_S_2C: "b" "b" "b" [0.50000000] // 1 1.00000000

| _S_3T~ [0.50000000] // 1

; // 2

_S_3T: "a" // 1 0.60000000

;

Use the option --remove-putback to remove nonterminal symbols with the suffix ‘~’ from a
learned PCFG. See [Learned PCFG], page 289, for the description of that option.

$ topdown --qp --remove-putback --simplify lookup.rg - <<< ’a a a a b b b’

S: "a" "a" _S_2C // 3

;

_S_2C: "b" "b" "b" [0.50000000] // 1 1.00000000

| [0.50000000] // 1

; // 2

Inserting Assembler Code [EXPERIMENTAL]

A template grammar can contain assembler code insertions enclosed in ‘{’ and ‘}’, for example:
S: . { op1 arg1

op2 arg2,arg3 } .

;

Processing a template grammar with assembler code insertions requires changing parser
source code to define corresponding instruction meta-classes and register corresponding instruc-
tion classes in the instruction class set.

7.3.2 Parsing a Token Sequence

To parse a training terminal symbol (token) sequence read from a file SYM SEQ FILE using a
template regular expression grammar read from a file REGEX GRAM FILE, use the command
line

$ topdown -i random_seed [-n seq_len] [--oo=LOG_FILE] \

[additional options] REGEX_GRAM_FILE SYM_SEQ_FILE

The file SYM SEQ FILE contains (unquoted) terminal symbols separated by spaces and/or
newlines.

See the descriptions of -i random_seed and -n seq_len options further on in this subsection.

If a filename REGEX GRAM FILE or SYM SEQ FILE is ‘-’, the parser reads file content
from stdin. If a filename LOG FILE is ‘-’, the parser writes file content to stdout.

When creating output files, the parser writes intermediate output to a file with the suffix
‘.tmp’ and renames this temporary file to a target file after finishing writing the output. This
approach prevents creating output files with incomplete content on aborting program execution.

Chapter 7: Example Programs 284

On passing the option --oo=LOG_FILE, the parser writes a log file LOG FILE with a line
like this:

$ topdown -i1 --oo=common_segm.log common_segm_2.rg common_segm.seq

$ cat common_segm.log

[0]: prob_gram 0.59900845, prob_term 0.66974218, prob_wpredict 0.85428619,

prob_npredict 0.84400000, cycle_period 81

The fields of this line (split into two lines in this example) have the following meaning:

[idx] Template grammar index. Using multiple template grammars improves predicting
the next terminal symbols in the training terminal symbol sequence. The options
--predict and --os=FILE turn on predicting the next terminal symbols using an
ensemble of template grammars. See [Predicted Token Sequence], page 292, for the
description of this mode and a command-line format for specifying multiple template
grammars.

prob_gram

The probability of parsing the training terminal symbol sequence by a learned gram-
mar. That probability is the weighted probability of all productions in a full learned
PCFG where weights are production frequencies.

prob_term

The weighted probability of productions containing terminal symbol sequences in
a full learned PCFG where weights are production frequencies. The probability
prob_gram is the weighted probability of prob_term and productions that do not
represent terminal symbol sequences.

prob_wpredict

The sum of estimated probabilities of correctly predicted terminal symbols in the
training terminal symbol sequence divided by the length of that sequence.

prob_npredict

The actual number of correctly predicted terminal symbols in the training terminal
symbol sequence divided by the length of that sequence.

cycle_period

Average cycle length for parsing the same symbol sequence from the training ter-
minal symbol sequence by the same group of terminal symbols, terminal symbol
classes, or ‘.’ from the template grammar. This average cycle length is equal to
total cycle length counted in terminal symbols divided by the number of cycles.
The parser increments the total cycle length and the number of cycles only if the
previous occurrence of that group was parsing a different terminal symbol sequence.

To only check the correctness of a template grammar, use the command line

$ topdown REGEX_GRAM_FILE

The following command-line options are applicable to parsing a terminal symbol sequence:

--kt=FLOAT

The temperature of the environment state identification engine. The default value
is 2.

-N, --npass=INT

The number of training passes. The parser reinitializes the environment state identi-
fication engine at each training pass and accumulates PCFG production frequencies
for all training passes. Using multiple training passes usually requires a shorter
training terminal symbol sequence to achieve the same quality of grammar synthe-
sis. Performing multiple training passes in parallel is possible but not implemented.
The default value is 1.

Chapter 7: Example Programs 285

-n, --nstep=INT

The length of the training terminal symbol sequence. If an input terminal symbol
sequence specified by SYM SEQ FILE ends earlier, the parser processes this input
sequence again from the beginning. For this repeated processing to be correct, the
input sequence should consist of an integer number of parse units, that is, end with
a complete parse unit. By default, the length of a training terminal symbol sequence
is equal to the length of an input terminal symbol sequence.

-i, --seed=INT

A seed for the pseudo-random number generator. A non-negative value turns on
adaptive parser operation. A negative value turns on random parser operation. The
default value is 0.

--oo=FILE

The name of a log file to dump parse statistics. The special name ‘-’ means to print
the log to stdout.

--stack-size=INT

The maximum nesting level of nonterminal symbols in parse trees generated while
parsing the training terminal symbol sequence. Parsing aborts on exceeding that
level. The default value is 32.

--ww=INT The length (width) of the cycle event history window and grammar event history
window counted in terminal symbols. By default, the parser sets and adjusts that
length automatically.

A parsing process aborts on encountering an unexpected terminal symbol. In this case, the
parser dumps a parse stack trace.

For example, using the template grammar

cat >unexpect.rg <<EOF

S: . A . ;

A: . . ("a" B | "s" B) ;

B: . . . (C | D) ;

C: "c" . . D ;

D: "d" . ;

EOF

to parse the sequence ‘a b c s e f g h i j’ results in the following stack trace:
$ topdown unexpect.rg - <<< ’a b c s e f g h i j’

STACK TRACE

#2 [0] S: . >>> A <<< .

a

#1 [1] A: . . ("a" B | "s" >>> B <<<)

b c s

#0 [4] B: . . . (>>> C | D <<<)

e f g

Unexpected terminal symbol [7]: h

The bottom line indicates the position (‘[7]’) of an unexpected symbol in the training ter-
minal symbol sequence and the symbol itself (‘h’). The pairs of lines above the bottom line
correspond to parse stack frames.

A number after ‘#’ indicates the index of a parse stack frame, where frame ‘#0’ is the current
stack frame, frame ‘#1’ is the previous stack frame, and so on. A number in square brackets (e.g.
‘[4]’) after the index of a parse stack frame indicates the position of the first terminal symbol
consumed while parsing a nonterminal symbol corresponding to the parse stack frame. The
nonterminal symbol itself ended with ‘:’ (e.g. ‘B:’) follows this number. A regular expression
(e.g. ‘. . . (>>> C | D <<<)’) for the nonterminal symbol follows it. In the regular expression,
the markers ‘>>>’ and ‘<<<’ indicate a subexpression with a parse error.

Chapter 7: Example Programs 286

The second line in a pair of lines for a parse stack frame lists terminal symbols (e.g. ‘e f g’)
consumed while parsing a regular expression before encountering a parse error.

A stack overflow produces a similar stack trace. For example, using the template grammar

cat >stack_overflow.rg <<EOF

S: . A ;

A: . . B ;

B: . . . C ;

C: A ;

EOF

to parse the sequence ‘a b c d e f g h i j k l m n’ with stack size 4 results in the following stack
trace:

$ topdown --stack-size=4 stack_overflow.rg - <<< ’a b c d e f g h i j k l m n’

STACK OVERFLOW

#3 [0] S: . >>> A <<<

a

#2 [1] A: . . >>> B <<<

b c

#1 [3] B: . . . >>> C <<<

d e f

#0 [6] C: >>> A <<<

g h i j

Terminal symbol [10]: k

The bottom line indicates the position (‘[10]’) of a terminal symbol led to creating a new
parse stack frame resulted in exceeding the maximum allowed number of parse stack frames.
The terminal symbol itself (‘k’) follows that position.

7.3.3 Output Information

Options --q...[=NONT] query various types of information before and after processing a training
terminal symbol sequence. On passing the option argument NONT, the parser dumps informa-
tion about a specified nonterminal symbol of a template regular expression grammar. You can
pass multiple options --q...=NONT to dump information about multiple nonterminal symbols.
If the option argument NONT not supplied, the parser dumps information about all nonterminal
symbols.

Options --o...=FILE specify filenames for dumping queried information. If FILE is ‘-’,
the parser dumps queried information to stdout. If an option --o...=FILE is present but a
corresponding option --q...[=NONT] is absent, the parser dumps information about all non-
terminal symbols to FILE. If an option --o...=FILE is absent but a corresponding option
--q...[=NONT] is present, the parser dumps queried information to stdout.

Other options might control output modes and additional filtering output information.

Initial Context-Free Grammar

An initial context-free grammar is a context-free grammar corresponding to a template regular
expression grammar. Use the following command-line format to dump the initial context-free
grammar before processing a training terminal symbol sequence:

$ topdown --qg[=NONT1] ... --qg[=NONTn] [--og=FILE] [--recurs=right] REGEX_GRAM_FILE

The following command-line options are applicable to dumping an initial context-free gram-
mar:

--og=FILE

Write the initial context-free grammar to a FILE. If FILE is ‘-’, write the grammar
to stdout. This option queries the initial context-free grammar.

Chapter 7: Example Programs 287

--qg[=NONT]

Dump initial context-free grammar productions for a nonterminal symbol NONT of
the template regular expression grammar to a file specified by the option --og=FILE.
You can pass multiple options --qg=NONT to dump productions for multiple nonter-
minal symbols. If the option --og=FILE not supplied, dump queried productions to
stdout. If NONT not supplied, dump the entire initial context-free grammar. This
option queries the initial context-free grammar.

--recurs=left|right

Recursion type for the productions of the initial context-free grammar: left or right.
By default, generate left-recursive productions.

Example:
$ cat >initial.rg <<EOF

S: . (B? . | . B B) ;

B: . (. .)* . ;

EOF

$ topdown --qg initial.rg

S: _S_1T _S_2C

;

B: _B_1T _B_2A _B_4T

;

_B_2A:

| _B_2A _B_3T2

;

_S_2C: _S_3Q _S_4T

| _S_5T B B

;

_S_3Q:

| B

;

The nonterminal symbols of a template regular expression grammar become the nonterminal
symbols of an initial context-free grammar. Auxiliary nonterminal symbols generated for a
nonterminal symbol X have formats described below, where i is the ordinal number of an
auxiliary nonterminal symbol for the nonterminal symbol X.

_X_iA Repeating an expression using the quantifier ‘*’ (Asterisk). The repeating is either
left-recursive or right-recursive (see the option --recurs=left|right). Example:
_B_2A.

_X_iC Choice alternatives separated by ‘|’. Example: _S_2C.

_X_iQ An expression for the quantifier ‘?’ (Question). Example: _S_3Q.

_X_iT A placeholder for a Terminal symbol. Example: _S_4T.

_X_iTj A placeholder for a sequence of Terminal symbols with length j. Example: _B_3T2.

Terminal Symbol Expansions

Terminal symbol expansions are sequences of terminal symbols consumed while parsing non-
terminal symbols of a template regular expression grammar. Use the following command-line
format to dump terminal symbol expansions collected while processing a training terminal sym-
bol sequence:

$ topdown --qe[=NONT1] ... --qe[=NONTn] [--oe=FILE] [--fe=fq_min] \

[--nle=num_lower] [--nue=num_upper] [--pe=prob_min] \

REGEX_GRAM_FILE SYM_SEQ_FILE

Chapter 7: Example Programs 288

The following command-line options are applicable to dumping terminal symbol expansions:

--fe=fq_min

The minimum number of occurrences (frequency) a terminal symbol expansion must
have for including it in the output. The default value is 0.

--nle=num_lower

If possible, dump at least a specified number of terminal symbol expansions for
every nonterminal symbol. The default value is 0.

--nue=num_upper

Dump at most a specified number of terminal symbol expansions for every non-
terminal symbol. The parser dumps the most probable expansions. No limit by
default.

--oe=FILE

Write terminal symbol expansions to a FILE. If FILE is ‘-’, write the expansions
to stdout. By default, write the expansions to stdout.

--pe=prob_min

A minimum probability a terminal symbol expansion must have for including it in
the output. The probability of a terminal symbol expansion is the number of occur-
rences (frequency) of this terminal symbol expansion divided by the total number
of occurrences of all terminal symbol expansions for a nonterminal symbol. The
default value is 0.

--qe[=NONT]

Dump terminal symbol expansions for a nonterminal symbol NONT of the template
regular expression grammar to a file specified by the option --oe=FILE. You can
pass multiple options --qe=NONT to dump terminal symbol expansions for multiple
nonterminal symbols. If the option --oe=FILE not supplied, dump queried terminal
symbol expansions to stdout. If NONT not supplied, dump terminal symbol expan-
sions for all nonterminal symbols. This option queries terminal symbol expansions.

On passing any of these options (except for the last one), if the option --qe[=NONT] is absent
on the command line, the parser implicitly turns on the option --qe.

Example:
$ cat >expan1.pcfg <<EOF

S: "a" "b" "c"

;

EOF

$ pcfg-generate-seq -n100 -o expan1.seq expan1.pcfg

$ cat >expan.rg <<EOF

S:

| A A

;

A: . . . ;

EOF

$ topdown -N10 --qe=S expan.rg expan1.seq

0.50000000 85 S: "a" "b" "c" "a" "b" "c"

0.18235294 31 S: "c" "a" "b" "c" "a" "b"

0.10588235 18 S: "a" "b" "c" "a" "b"

0.08235294 14 S: "b" "c" "a" "b" "c"

0.08235294 14 S: "c" "a" "b" "c" "a"

0.04705882 8 S: "b" "c" "a" "b" "c" "a"

Every line with a terminal symbol expansion consists of:

1. The probability of the expansion.

2. The number of occurrences (frequency) of the expansion.

Chapter 7: Example Programs 289

3. A parsed nonterminal symbol followed by ‘:’.

4. A sequence of terminal symbols.

Learned PCFG

A learned PCFG is a PCFG based on an initial context-free grammar (see [Initial Context-Free
Grammar], page 286) generated for a template regular expression grammar. Productions in this
PCFG have frequencies accumulated while parsing a training terminal symbol sequence. Use the
following command-line format to dump a learned PCFG:

$ topdown --qp[=NONT1] ... --qp[=NONTn] [--op=FILE] \

[--fp=fq_min_prod] [--ft=fq_min_term] \

[--nlp=num_lower_prod] [--nlt=num_lower_term] \

[--nup=num_upper_prod] [--nut=num_upper_term] \

[--pp=prob_min_prod] [--pt=prob_min_term] \

[--fq-span=window] [--recurs=right] [--remove-putback] \

[--simplify] [--term1] REGEX_GRAM_FILE SYM_SEQ_FILE

The following command-line options are applicable to dumping a learned PCFG:

--fp=fq_min_prod

A minimum frequency a production must have for including it in the learned PCFG.
This option does not filter productions representing possible terminal symbol se-
quences for terminal symbol placeholder sequences (with nonterminal symbols _X_iT
and _X_iTj at the left-hand side). On passing the option --simplify, the parser
filters productions before simplifying a PCFG. The default value is 0.

--fq-span=window|total

Event history span for accumulating production frequencies to include in the learned
PCFG:

‘window’ Event history window. See the description of --ww=INT option in
Section 7.3.2 [Parsing a Token Sequence], page 283.

‘total’ Entire event history.

The default value is “total”.

--ft=fq_min_term

A minimum frequency a production must have for including it in the learned PCFG.
This option only filters productions representing possible terminal symbol sequences
for terminal symbol placeholder sequences (with nonterminal symbols _X_iT and _

X_iTj at the left-hand side). On passing the option --simplify, the parser filters
productions before simplifying a PCFG. The default value is 0.

--nlp=num_lower_prod

If possible, include in the learned PCFG at least a specified number of right-hand
sides for every nonterminal symbol at the left-hand side. This option does not filter
productions representing possible terminal symbol sequences for terminal symbol
placeholder sequences (with nonterminal symbols _X_iT and _X_iTj at the left-
hand side). On passing the option --simplify, the parser filters productions before
simplifying a PCFG. The default value is 0.

--nlt=num_lower_term

If possible, include in the learned PCFG at least a specified number of right-hand
sides for every nonterminal symbol at the left-hand side. This option only filters
productions representing possible terminal symbol sequences for terminal symbol
placeholder sequences (with nonterminal symbols _X_iT and _X_iTj at the left-
hand side). On passing the option --simplify, the parser filters productions before
simplifying a PCFG. The default value is 0.

Chapter 7: Example Programs 290

--nup=num_upper_prod

Include in the learned PCFG at most a specified number of right-hand sides for
every nonterminal symbol at the left-hand side. The parser retains the most prob-
able right-hand sides. This option does not filter productions representing possible
terminal symbol sequences for terminal symbol placeholder sequences (with non-
terminal symbols _X_iT and _X_iTj at the left-hand side). On passing the option
--simplify, the parser filters productions before simplifying a PCFG. No limit by
default.

--nut=num_upper_term

Include in the learned PCFG at most a specified number of right-hand sides for ev-
ery nonterminal symbol at the left-hand side. The parser retains the most probable
right-hand sides. This option only filters productions representing possible terminal
symbol sequences for terminal symbol placeholder sequences (with nonterminal sym-
bols _X_iT and _X_iTj at the left-hand side). On passing the option --simplify,
the parser filters productions before simplifying a PCFG. No limit by default.

--op=FILE

Write the learned PCFG to a FILE. If FILE is ‘-’, write the PCFG to stdout. This
option queries the learned PCFG.

--pp=prob_min_prod

A minimum probability a production must have for including it in the learned
PCFG. This option does not filter productions representing possible terminal symbol
sequences for terminal symbol placeholder sequences (with nonterminal symbols
_X_iT and _X_iTj at the left-hand side). On passing the option --simplify, the
parser filters productions before simplifying a PCFG. The default value is 0.

--pt=prob_min_term

A minimum probability a production must have for including it in the learned PCFG.
This option only filters productions representing possible terminal symbol sequences
for terminal symbol placeholder sequences (with nonterminal symbols _X_iT and _

X_iTj at the left-hand side). On passing the option --simplify, the parser filters
productions before simplifying a PCFG. The default value is 0.

--qp[=NONT]

Dump learned PCFG productions for a nonterminal symbol NONT and auxiliary
nonterminal symbols it uses to a file specified by the option --op=FILE. The nonter-
minal symbol must belong to a set of nonterminal symbols of the template regular
expression grammar. You can pass multiple options --qp=NONT to dump produc-
tions for multiple nonterminal symbols. If the option --op=FILE not supplied, dump
queried productions to stdout. If NONT not supplied, dump the entire learned
PCFG. This option queries the learned PCFG.

--remove-putback

Remove from the learned PCFG auxiliary nonterminal symbols for terminal symbol
placeholder sequences processed in put-back mode. Those nonterminal symbols
have the suffix ‘~’ in the right-hand sides of productions: _X_iT~ or _X_iTj~. See
[Put-back Terminal Symbols], page 282, for more information. By default, do not
remove nonterminal symbols for terminal symbol placeholder sequences processed
in put-back mode.

--term1 For every nonterminal symbol at the left-hand side, retain most probable right-
hand sides beginning with unique terminal symbols. This mode is only applicable
to productions representing possible terminal symbol sequences for terminal symbol
placeholder sequences (with nonterminal symbols _X_iT and _X_iTj at the left-hand

Chapter 7: Example Programs 291

side). By default, the right-hand sides of productions with a specific nonterminal
symbol at the left-hand side can start with duplicate terminal symbols.

See [Initial Context-Free Grammar], page 286, for the description of --recurs=left|right
option. See Section 7.3.4 [Iterative Determinization], page 294, for the description of --simplify
option.

The example of dumping a learned PCFG is below. See [Terminal Symbol Expansions],
page 287, for the content of expan.rg and expan1.seq files.

$ topdown -N10 --qp expan.rg expan1.seq

S: A A [0.73446328] // 130

| _S_1T5 [0.26553672] // 47

; // 177

A: _A_1T3 // 258

;

_A_1T3: "a" "b" "c" [0.68650794] // 173 0.77216188

| "c" "a" "b" [0.25000000] // 63 0.03027511

| "b" "c" "a" [0.06349206] // 16 0.00044992

; // 252

_S_1T5: "a" "b" "c" "a" "b" [0.39130435] // 18 0.31862270

| "c" "a" "b" "c" "a" [0.30434783] // 14 0.09068896

| "b" "c" "a" "b" "c" [0.30434783] // 14 0.09068895

; // 46

See Section 8.1 [pcfg-generate-seq], page 318, for the PCFG format. See [Initial Context-Free
Grammar], page 286, for the format of generated nonterminal symbol names beginning with ‘_’.

A comment at the end of each right-hand side contains its frequency. A comment after ‘;’
contains the sum of frequencies of all right-hand sides.

A fractional number after the frequency of a right-hand side representing a possible terminal
symbol sequence for a terminal symbol placeholder sequence (with a nonterminal symbol _X_iT
or _X_iTj at the left-hand side) is the score of this right-hand side. The parser gets rid of
right-hand sides with less scores during iterative determinization.

Note: simplifying a learned PCFG by passing the option --simplify might remove
scores from right-hand sides of productions.

Residual Regex Grammar

A residual regular expression grammar is a template regular expression grammar containing:

– a subset of control transfer branches from template regular expressions;

– sets of terminal symbol sequences separated by ‘|’ possibly enclosed in ‘(’ and ‘)’ for groups
of terminal symbols, terminal symbol classes, or ‘.’ in template regular expressions.

The parser generates a residual regular expression grammar based on a learned PCFG.

Use the following command-line format to dump a residual regular expression grammar:

$ topdown --qr[=NONT1] ... --qr[=NONTn] [--or=FILE] \

[--fp=fq_min_prod] [--ft=fq_min_term] \

[--nlp=num_lower_prod] [--nlt=num_lower_term] \

[--nup=num_upper_prod] [--nut=num_upper_term] \

[--pp=prob_min_prod] [--pt=prob_min_term] \

[--simplify] [--terse] REGEX_GRAM_FILE SYM_SEQ_FILE

See [Learned PCFG], page 289, for the description of --fp=fq_min_prod, --ft=fq_min_term,
--nlp=num_lower_prod, --nlt=num_lower_term, --nup=num_upper_prod, --nut=num_upper_
term, --pp=prob_min_prod, and --pt=prob_min_term options. See Section 7.3.4 [Iterative
Determinization], page 294, for the description of --simplify and --terse options.

Chapter 7: Example Programs 292

Options specific to dumping a residual regular expression grammar are the following:

--or=FILE

Write the residual regular expression grammar to a FILE. If FILE is ‘-’, write the
grammar to stdout. This option queries the residual regular expression grammar.

--qr[=NONT]

Dump productions of the residual regular expression grammar with a nonterminal
symbol NONT at the left-hand side to a file specified by the option --or=FILE. You
can pass multiple options --qr=NONT to dump productions for multiple nonterminal
symbols. If the option --or=FILE not supplied, dump queried productions to stdout.
If NONT not supplied, dump the entire residual regular expression grammar. This
option queries the residual regular expression grammar.

The example of dumping a residual regular expression grammar is below. See [Terminal
Symbol Expansions], page 287, for the content of expan.rg and expan1.seq files. See [Learned
PCFG], page 289, for a corresponding example of dumping a learned PCFG.

$ topdown -N10 --qr --nut=2 expan.rg expan1.seq

S: A A

| ("a" "b" "c" "a" "b"

| "c" "a" "b" "c" "a"

)

;

A: "a" "b" "c"

| "c" "a" "b"

;

Determinized Regex Grammar

The parser performs the iterative determinization of a template regular expression grammar on
passing the option --od=FILE, --ode=FILE, --qd[=NONT], or --qde[=NONT].

See Section 7.3.4 [Iterative Determinization], page 294, for more information on this mode.
See Section 7.3.5 [Examples], page 295, demonstrating grammar learning by iterative deter-
minization.

Predicted Token Sequence

Predicted token sequence is a terminal symbol sequence the parser predicts while parsing a
training terminal symbol sequence. For every processed symbol from the training terminal
symbol sequence, the parser predicts the next symbol in this sequence and appends a predicted
symbol to the predicted terminal symbol sequence. For a currently processed symbol from the
training terminal symbol sequence, the parser predicts the next terminal symbol in the following
way:

• If the next terminal symbol corresponds to the beginning of the next group of terminal
symbols from the template grammar, predict the next terminal symbol based on accumu-
lated frequencies of pairs <group,term>, where group is the identifier of a group of terminal
symbols in the template grammar, and term is a symbol from the training terminal symbol
sequence processed just after parsing this group and corresponding to the beginning of the
next group. The parser selects a predicted terminal symbol from a pair with maximum
frequency for a current group of terminal symbols.

• If the next terminal symbol is not at the beginning of a group of terminal symbols from
the template grammar, predict the next terminal symbol based on accumulated frequencies
of triples <group,prefix,term>, where group is the identifier of a group of terminal symbols
in the template grammar, prefix is a prefix symbol subsequence from the training terminal
symbol sequence consumed for this group, and term is a terminal symbol following this

Chapter 7: Example Programs 293

subsequence. The parser selects a predicted terminal symbol from a triple with maximum
frequency for a current group of terminal symbols and a current prefix subsequence.

The parser supports processing multiple template regular expression grammars to generate
a predicted terminal symbol sequence using an ensemble method. The output parameter prob_
epredict printed on passing the option --oo=LOG_FILE in terminal symbol prediction mode is
the probability of a terminal symbol correctly predicted using the ensemble method.

Use the following command-line format to predict a terminal symbol sequence:

$ topdown [--os=COMBINED_SEQ_FILE] [--predict] --oo=LOG_FILE \

REGEX_GRAM_FILE_1 ... REGEX_GRAM_FILE_n SYM_SEQ_FILE

The arguments REGEX GRAM FILE 1, ..., REGEX GRAM FILE n specify template reg-
ular expression grammars for applying the ensemble method.

The following command-line options are applicable to predicting a terminal symbol sequence:

--os=COMBINED_SEQ_FILE

Write a combined sequence to a COMBINED SEQ FILE. If COM-
BINED SEQ FILE is ‘-’, write the sequence to stdout. The combined sequence
consists of an actual (training) terminal symbol sequence and predicted terminal
symbol sequence. See the description of COMBINED SEQ FILE argument
of pcfg-predict-eval program in [Invocation], page 320, for the format of a
combined sequence. This option turns on terminal symbol prediction mode.

--predict

Turn on terminal symbol prediction mode.

Example:

$ cat >predict_in.pcfg <<EOF

S: "a" "b" "c" "c" "b" "a" ;

EOF

$ pcfg-generate-seq -i1 -n100 -o predict_in.seq predict_in.pcfg

$ cat >predict_L5.rg <<EOF

S: ;

EOF

$ cat >predict_L6.rg <<EOF

S: ;

EOF

$ cat >predict_L7.rg <<EOF

S: ;

EOF

$ topdown -n2000 --os=predict_out.seq --oo=- predict_L[567].rg predict_in.seq

[0]: prob_gram 0.40871026, prob_term 0.16667084, prob_wpredict 0.76012888,

prob_npredict 0.69000000, cycle_period 30

[1]: prob_gram 1.00000000, prob_term 1.00000000, prob_wpredict 0.99550000,

prob_npredict 0.99550000, cycle_period 0

[2]: prob_gram 0.40890063, prob_term 0.16667590, prob_wpredict 0.81901080,

prob_npredict 0.69750000, cycle_period 42

prob_epredict 0.90650000

$ head -n5 predict_out.seq

"a"!=? "b"!=? "c"!=? "c"!=? "b"!=? "a"!=? "a"!="b" "b"=="b" "c"=="c" "c"=="c"

"b"!="a" "a"=="a" "a"=="a" "b"=="b" "c"!="b" "c"!="a" "b"=="b" "a"=="a"

"a"=="a" "b"=="b" "c"!="a" "c"!="b" "b"!="c" "a"=="a" "a"=="a" "b"=="b"

"c"!="a" "c"=="c" "b"!="c" "a"!="c" "a"=="a" "b"!="a" "c"=="c" "c"=="c"

"b"=="b" "a"=="a" "a"!="b" "b"=="b" "c"=="c" "c"=="c" "b"!="a" "a"=="a"

See Section 7.3.5 [Examples], page 295, for the use of predicting training terminal symbol
sequences to evaluate the quality of learned regular expression grammars.

Chapter 7: Example Programs 294

7.3.4 Iterative Determinization

Iterative grammar determinization is a process of learning a partially or fully deterministic
regular expression grammar by iterative removing terminal symbols from look-ahead terminal
symbol classes in a template regular expression grammar.

While removing the terminal symbols, the parser preserves terminal symbol coverage for the
unions of look-ahead terminal symbol classes at the beginnings of control transfer branches—if
removing a terminal symbol results in lesser coverage, the parser skips the removal. Providing
the same terminal symbol coverage ensures that parsing never aborts on an unexpected terminal
symbol when using a learned grammar to parse any terminal symbol sequence conforming to
the template grammar.

To iteratively determinize a template regular expression grammar, use the command line

$ topdown -i random_seed [-n seq_len] [--det-niter-goal=num_iters] \

--od=DET_GRAM_FILE --oo=LOG_FILE \

[additional options] REGEX_GRAM_FILE SYM_SEQ_FILE

The parameter DET GRAM FILE specifies an output file with a determinized regular ex-
pression grammar. See Section 7.3.2 [Parsing a Token Sequence], page 283, for the description of
REGEX GRAM FILE, SYM SEQ FILE, LOG FILE, random seed, and seq len parameters.

The parameter num iters specifies the number of determinization iterations to perform. The
actual number of iterations is less than num iters if the number of removable terminal symbols
is less than num iters. If the number of removable terminal symbols is greater than num iters,
the parser removes multiple terminal symbols on some or all iterations. At each iteration, the
parser processes a training terminal symbol sequence from the beginning to end.

Note: determinizing a template regular expression grammar containing ‘*’ quanti-
fiers might not lead to acceptable results.

At every determinization iteration, the parser dumps to a log file a block of lines like this:

Iteration 3:

P: prob_gram ..., prob_term ..., prob_wpredict ..., prob_npredict ..., cycle_period 97

T: prob_gram ..., prob_term ..., prob_wpredict ..., prob_npredict ..., cycle_period 87

n_term_removable 8, n_term_removed 1, iter_time 0s

An iteration index (e.g. 3) goes after ‘Iteration’.

A line beginning with ‘P: ’ (“Pass”) contains parse statistics collected for a current iteration.
A line beginning with ‘T: ’ (“Total”) contains aggregate parse statistics for all iterations up to
the current iteration. See Section 7.3.2 [Parsing a Token Sequence], page 283, for the description
of fields of both lines.

The parameter ‘n_term_removable’ specifies the total number (e.g. 8) of symbols removable
from terminal symbol classes in a current determinized regular expression grammar without
reducing its terminal symbol coverage. The parameter ‘n_term_removed’ less than or equal to
‘n_term_removable’ specifies the number of terminal symbols actually removed at this itera-
tion. The parameter ‘iter_time’ is a rounded number of seconds (e.g. ‘0s’) the iteration was
executing.

Command-line options applicable to iterative template grammar determinization are the
following:

--det-fixed=INT

The minimum number of symbols to attempt to remove from terminal symbol classes
at each iteration. The default value is 1.

--det-interim

Create a separate set of output files at each iteration. The files have the suffix
‘.ITER’, where ITER is an iteration index. By default, the parser overwrites output
files for a current determinized grammar at each iteration.

Chapter 7: Example Programs 295

--det-niter-goal=INT

The number of iterations to perform. The actual number of iterations cannot exceed
the number of terminal symbols removable from the template regular expression
grammar without reducing its terminal symbol coverage. At each iteration, the
parser tries to remove approximately equal numbers of terminal symbols with the
goal to remove all unnecessary terminal symbols by the end of last iteration.

--det-niter-max=INT

Limit on the number of iterations. The parser stops after performing a specified
number of iterations. Special value 0 means no limit. The default value is 0.

--det-ratio=FLOAT

Minimum ratio for the number of symbols to attempt to remove at each iteration
relative to the number of removable terminal symbols. The default value is 0.

--od=FILE

Write a determinized regular expression grammar to FILE at the end of each iter-
ation. On passing the option --det-interim, create a file with an iteration index
suffix. If FILE is ‘-’, write the grammar to stdout. The grammar does not include
branches disabled using the empty terminal symbol class ‘[]’. This option turns on
iterative grammar determinization mode.

--ode=FILE

Dump a determinized regular expression grammar containing branches disabled us-
ing the empty terminal symbol class ‘[]’. In other respects, this option is similar to
the option --od=FILE and turns on iterative grammar determinization mode.

--qd[=NONT]

Dump a production for a nonterminal symbol NONT at the left-hand side to a
file specified by the option --od=FILE. You can pass multiple options --qd=NONT

to dump productions for multiple nonterminal symbols in a determinized regular
expression grammar. If the option --od=FILE not supplied, dump requested pro-
ductions to stdout. If NONT not supplied, dump the entire determinized regular
expression grammar. This option turns on iterative grammar determinization mode.

--qde[=NONT]

This option is similar to --qd[=NONT] but corresponds to the option --ode=FILE

for dumping productions containing branches disabled using the empty terminal
symbol class ‘[]’. This option turns on iterative grammar determinization mode.

The following command-line options are also applicable to other parser operation modes:

--simplify

Partially simplify a determinized regular expression grammar or residual regular
expression grammar (see [Residual Regex Grammar], page 291) or fully simplify
a final PCFG (see [Learned PCFG], page 289). By default, do not simplify those
grammars.

--terse Dump regular expressions in the productions of a determinized regular expression
grammar or residual regular expression grammar (see [Residual Regex Grammar],
page 291) in condensed format. By default, dump those regular expressions in
indented format.

7.3.5 Examples

This subsection contains examples of learning simple grammars by iterative template grammar
determinization. These examples use auxiliary programs described in Section 8.1 [pcfg-generate-
seq], page 318, Section 8.2 [pcfg-predict-eval], page 319, and Section 8.3 [mk-rg-vit.sh], page 325.
The examples also use grammar files located in the directory samples/gram.

Chapter 7: Example Programs 296

To reproduce these examples, build sample programs in the subdirectory samples by running
make in that subdirectory, change the current directory to the root of package distribution, and
execute the following preparation commands:

$ cd samples

$ mkdir seq

$ mkdir td-learn

Continue by executing commands for all or specific examples below.

Example 1
$ cat gram/1.pcfg

S: A B

;

A: "a" "b" "c" "d"

| "d" "c" "b" "a"

;

B: "e" "f" "g" "h"

| "h" "g" "f" "e"

;

$./pcfg-generate-seq -i1 -n1000 -o seq/1-1k.seq gram/1.pcfg

$../scripts/mk-rg-vit.sh 6 6 2 | sed ’s/\./x/g;s/x/. ./g’ >gram/1.rg

$./topdown -i1 -n5000 --det-niter-goal=50 --od=td-learn/1_det.rg \

--oo=td-learn/1.log gram/1.rg seq/1-1k.seq

$./topdown -i1 -n5000 --od=td-learn/1_out.rg --op=td-learn/1_out.pcfg \

--oo=- --simplify td-learn/1_det.rg seq/1-1k.seq

Iteration 1:

P: prob_gram 0.38868050, prob_term 0.67069879, prob_wpredict 0.87357922,

prob_npredict 0.85920000, cycle_period 302

T: prob_gram 0.38868050, prob_term 0.67069879, prob_wpredict 0.87357922,

prob_npredict 0.85920000, cycle_period 302

Finished.

$ cat td-learn/1_out.pcfg

S: "e" "f" "g" "h" [0.24237288] // 143 0.67482141

| "a" "b" "c" "d" "e" "f" "g" "h" "d" "c" "b" "a" [0.05084746] // 30 0.49436096

| "f" "e" "a" "b" "c" "d" "e" "f" "g" "h" [0.02542373] // 15 0.49146115

| "g" "h" "d" "c" "b" "a" [0.02372881] // 14 0.44138031

| "h" "g" "f" "e" "d" "c" [0.07288136] // 43 0.39136158

| "h" "g" "f" "e" "a" "b" [0.05932203] // 35 0.11283430

| "g" "h" "a" "b" "c" "d" [0.01694915] // 10 0.05861997

| "f" "e" "a" "b" "c" "d" "h" "g" "f" "e" [0.01694915] // 10 0.00852268

| "a" "b" "c" "d" "h" "g" "f" "e" "a" "b" "c" "d" [0.03389831] // 20 0.00380790

| "a" "b" "c" "d" "h" "g" "f" "e" "d" "c" "b" "a" [0.03220339] // 19 0.00205861

| "a" "b" "c" "d" "e" "f" "g" "h" "a" "b" "c" "d" [0.02542373] // 15 0.00012448

| "f" "e" "d" "c" "b" "a" "h" "g" "f" "e" [0.00847458] // 5 0.00000832

| "f" "e" "d" "c" "b" "a" "e" "f" "g" "h" [0.00847458] // 5 0.00000832

| "d" "c" "b" "a" L4_1 [0.17796610] // 105

| _S_6T6 L3_0 [0.14576271] // 86

| "c" "d" L5_1 [0.05932203] // 35

; // 590

L3_0: "d" "c" "b" "a" [0.31395349] // 27 0.50017602

| "a" "b" "c" "d" "h" "g" [0.40697674] // 35 0.45315649

| "a" "b" "c" "d" "e" "f" [0.27906977] // 24 0.04712356

; // 86

Chapter 7: Example Programs 297

L4_1: "e" "f" "g" "h" "d" "c" "b" "a" [0.19047619] // 20 0.49996722

| "e" "f" "g" "h" "a" "b" "c" "d" [0.05714286] // 6 0.00003280

| "h" "g" "f" "e" _L4_1_31C [0.75238095] // 79

; // 105

_L4_1_31C: "d" "c" [0.55128205] // 43 0.51136126

| "a" "b" "c" "d" [0.44871795] // 35 0.50015210

; // 78

L5_1: "e" "f" "g" "h" [0.28571429] // 10 0.50000418

| "h" "g" "f" "e" "d" "c" "b" "a" [0.40000000] // 14 0.43658578

| "h" "g" "f" "e" "a" "b" "c" "d" [0.31428571] // 11 0.06341424

; // 35

_S_6T6: "b" "a" "e" "f" "g" "h" [0.60465116] // 52 0.46600081

| "b" "a" "h" "g" "f" "e" [0.39534884] // 34 0.03664941

; // 86

$./topdown -i-1 -n5000 --os=seq/1_random.seq --oo=- gram/1.rg seq/1-1k.seq

[0]: prob_gram 0.10092052, prob_term 0.12859297, prob_wpredict 0.49162300,

prob_npredict 0.41920000, cycle_period 1387

prob_epredict 0.41920000

$./topdown -i1 -n5000 --os=seq/1_predict.seq --oo=- td-learn/1_out.rg seq/1-1k.seq

[0]: prob_gram 0.38868050, prob_term 0.67069879, prob_wpredict 0.87357922,

prob_npredict 0.85920000, cycle_period 302

prob_epredict 0.85920000

$./pcfg-predict-eval --prob-rand=0.41920000 gram/1.pcfg seq/1_predict.seq

{

"seq_len" : 5000,

"wpredict_max" : 4375.00000000,

"npredict_actual" : 4296,

"wpredict_rand" : 2096.0,

"prob_wpredict_max" : 0.87500000,

"prob_npredict_actual" : 0.85920000,

"prob_npredict_rand" : 0.41920000,

"efficiency_rand, %" : 96.5

}

Example 2
$ cat gram/2.pcfg

S: L00 L01

;

L00: L10 L11

| L11 L10

;

L01: L12 L13

| L13 L12

;

L10: "a" "b" "c" "d"

;

L11: "e" "f" "g" "h"

;

Chapter 7: Example Programs 298

L12: "d" "c" "b" "a"

;

L13: "h" "g" "f" "e"

;

$./pcfg-generate-seq -i1 -n5000 -o seq/2-5k.seq gram/2.pcfg

$../scripts/mk-rg-vit.sh 3 3 4 | sed ’s/\./x/g;s/x/(.)/g’ >gram/2.rg

$./topdown -i1 -n50000 --det-niter-goal=50 --od=td-learn/2_det.rg \

--oo=td-learn/2.log gram/2.rg seq/2-5k.seq

$./topdown -i1 -n50000 --od=td-learn/2_out.rg --op=td-learn/2_out.pcfg \

--oo=- --simplify td-learn/2_det.rg seq/2-5k.seq

Iteration 1:

P: prob_gram 0.63045929, prob_term 0.70775443, prob_wpredict 0.93996764,

prob_npredict 0.93858000, cycle_period 89

T: prob_gram 0.63045929, prob_term 0.70775443, prob_wpredict 0.93996764,

prob_npredict 0.93858000, cycle_period 89

Finished.

$ cat td-learn/2_out.rg

S: "a" (.)

| ["b" "c" "f" "g"] (.)

| "d" (["a" "h"]

| "e"

| ["b" "c" "f" "g"] (.)

| "d" (.)

)

| "e" (.)

| "h" ("a"

| "e"

| ["b" "c" "f" "g"] (.)

| "d" (.)

| "h" (.)

)

;

$ cat td-learn/2_out.pcfg

S: "e" "f" "g" "h" "a" "b" "c" "d" _S_6T8 [0.51648000] // 1614

| "a" "b" "c" "d" "e" "f" "g" "h" _S_4T8 [0.48352000] // 1511

; // 3125

_S_6T8: "d" "c" "b" "a" "h" "g" "f" "e" [0.54089219] // 873 0.75881672

| "h" "g" "f" "e" "d" "c" "b" "a" [0.45910781] // 741 0.35747012

; // 1614

_S_4T8: "h" "g" "f" "e" "d" "c" "b" "a" [0.48974189] // 740 0.45797606

| "d" "c" "b" "a" "h" "g" "f" "e" [0.51025811] // 771 0.42573710

; // 1511

$./topdown -i-1 -n50000 --os=seq/2_random.seq --oo=- gram/2.rg seq/2-5k.seq

[0]: prob_gram 0.15951272, prob_term 0.25459233, prob_wpredict 0.87613399,

prob_npredict 0.86430000, cycle_period 2403

prob_epredict 0.86430000

$./topdown -i1 -n50000 --os=seq/2_predict.seq --oo=- td-learn/2_out.rg seq/2-5k.seq

[0]: prob_gram 0.63045929, prob_term 0.70775443, prob_wpredict 0.93996764,

prob_npredict 0.93858000, cycle_period 89

prob_epredict 0.93858000

Chapter 7: Example Programs 299

$./pcfg-predict-eval --prob-rand=0.86430000 gram/2.pcfg seq/2_predict.seq

{

"seq_len" : 50000,

"wpredict_max" : 46875.00000000,

"npredict_actual" : 46929,

"wpredict_rand" : 43215.0,

"prob_wpredict_max" : 0.93750000,

"prob_npredict_actual" : 0.93858000,

"prob_npredict_rand" : 0.86430000,

"efficiency_rand, %" : 100.0

}

Example 3
$ cat gram/3.pcfg

S: A B

;

A: "a" "b" "c"

| "d" "c" "b" "a"

;

B: "e"

| "f" "e"

;

$./pcfg-generate-seq -i1 -n2000 -o seq/3-2k.seq gram/3.pcfg

$../scripts/mk-rg-vit.sh 6 6 2 >gram/3.rg

$./topdown -i1 -n5000 --det-niter-goal=50 --od=td-learn/3_det.rg \

--oo=td-learn/3.log gram/3.rg seq/3-2k.seq

$./topdown -i1 -n5000 --od=td-learn/3_out.rg --op=td-learn/3_out.pcfg \

--oo=- --simplify td-learn/3_det.rg seq/3-2k.seq

Iteration 1:

P: prob_gram 0.40992566, prob_term 0.56725727, prob_wpredict 0.79502085,

prob_npredict 0.78240000, cycle_period 61

T: prob_gram 0.40992566, prob_term 0.56725727, prob_wpredict 0.79502085,

prob_npredict 0.78240000, cycle_period 61

Finished.

$ cat td-learn/3_out.rg

S: "a" . .

| "b"

| "c" . .

| "e"

| "f"

| "d" . . . (["a" "d"]

| ["b" "c" "e"]

| "f" .

)

;

$ cat td-learn/3_out.pcfg

Chapter 7: Example Programs 300

S: "f" "e" "d" "c" "b" "a" [0.12712713] // 127 0.80250568

| "a" "b" "c" [0.15915916] // 159 0.55241081

| "e" "d" "c" "b" "a" [0.19719720] // 197 0.49884307

| "e" "a" "b" "c" "f" [0.11411411] // 114 0.17593122

| "f" "e" "a" "b" "c" "e" [0.06006006] // 60 0.14745296

| "e" "a" "b" "c" "e" [0.09909910] // 99 0.10209655

| "f" "e" "a" "b" "c" "f" [0.05205205] // 52 0.09883227

| "d" "c" "b" "a" L2_1 [0.19119119] // 191

; // 999

L2_1: "e" [0.54210526] // 103 0.55160321

| "f" "e" [0.45789474] // 87 0.52205497

; // 190

$./topdown -i-1 -n5000 --os=seq/3_random.seq --oo=- gram/3.rg seq/3-2k.seq

[0]: prob_gram 0.09174307, prob_term 0.11068237, prob_wpredict 0.53279974,

prob_npredict 0.40400000, cycle_period 993

prob_epredict 0.40400000

$./topdown -i1 -n5000 --os=seq/3_predict.seq --oo=- td-learn/3_out.rg seq/3-2k.seq

[0]: prob_gram 0.40992566, prob_term 0.56725727, prob_wpredict 0.79502085,

prob_npredict 0.78240000, cycle_period 61

prob_epredict 0.78240000

$./pcfg-predict-eval --prob-rand=0.40400000 gram/3.pcfg seq/3_predict.seq

{

"seq_len" : 5000,

"wpredict_max" : 4001.50000000,

"npredict_actual" : 3912,

"wpredict_rand" : 2020.0,

"prob_wpredict_max" : 0.80030000,

"prob_npredict_actual" : 0.78240000,

"prob_npredict_rand" : 0.40400000,

"efficiency_rand, %" : 95.5

}

Example 4
$ cat gram/4.pcfg

S: B

| B C C

;

B: "b" "c" "c"

;

C: "c" "b" "b"

;

$./pcfg-generate-seq -i1 -n1000 -o seq/4-1k.seq gram/4.pcfg

$../scripts/mk-rg-vit.sh 5 5 2 | sed ’s/\./x/g;s/x/(. . .)/g’ >gram/4.rg

$./topdown -i1 -n5000 --det-niter-goal=50 --od=td-learn/4_det.rg \

--oo=td-learn/4.log gram/4.rg seq/4-1k.seq

Chapter 7: Example Programs 301

$./topdown -i1 -n5000 --od=td-learn/4_out.rg --op=td-learn/4_out.pcfg \

--oo=- --simplify td-learn/4_det.rg seq/4-1k.seq

Iteration 1:

P: prob_gram 0.79812783, prob_term 1.00000000, prob_wpredict 0.92266441,

prob_npredict 0.92020000, cycle_period 0

T: prob_gram 0.79812783, prob_term 1.00000000, prob_wpredict 0.92266441,

prob_npredict 0.92020000, cycle_period 0

Finished.

$ cat td-learn/4_out.rg

S: "b" . .

| "c" . . (. . .) . . .

;

$ cat td-learn/4_out.pcfg

S: "b" "c" "c" [0.46650124] // 376 0.70034533

| "c" "b" "b" "c" "b" "b" "b" "c" "c" [0.53349876] // 430

; // 806

$./topdown -i-1 -n5000 --os=seq/4_random.seq --oo=- gram/4.rg seq/4-1k.seq

[0]: prob_gram 0.31424201, prob_term 0.53007807, prob_wpredict 0.75701255,

prob_npredict 0.70320000, cycle_period 629

prob_epredict 0.70320000

$./topdown -i1 -n5000 --os=seq/4_predict.seq --oo=- td-learn/4_out.rg seq/4-1k.seq

[0]: prob_gram 0.79812783, prob_term 1.00000000, prob_wpredict 0.92266441,

prob_npredict 0.92020000, cycle_period 0

prob_epredict 0.92020000

$./pcfg-predict-eval --prob-rand=0.70320000 gram/4.pcfg seq/4_predict.seq

{

"seq_len" : 5000,

"wpredict_max" : 4597.00000000,

"npredict_actual" : 4601,

"wpredict_rand" : 3516.0,

"prob_wpredict_max" : 0.91940000,

"prob_npredict_actual" : 0.92020000,

"prob_npredict_rand" : 0.70320000,

"efficiency_rand, %" : 100.0

}

Example 5
$ cat gram/5.pcfg

S: B C

| B C C

| D C B

| D D C

;

B: "a" "a"

;

C: "c" "b" "c"

;

D: "d" "b" "b" "d"

;

Chapter 7: Example Programs 302

$./pcfg-generate-seq -i1 -n10000 -o seq/5-10k.seq gram/5.pcfg

$../scripts/mk-rg-vit.sh 5 5 2 >gram/5.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/5_det.rg \

--oo=td-learn/5.log gram/5.rg seq/5-10k.seq

$./topdown -i1 --od=td-learn/5_out.rg --op=td-learn/5_out.pcfg \

--oo=- --simplify td-learn/5_det.rg seq/5-10k.seq

Iteration 1:

P: prob_gram 0.58674430, prob_term 1.00000000, prob_wpredict 0.86162420,

prob_npredict 0.86020214, cycle_period 0

T: prob_gram 0.58674430, prob_term 1.00000000, prob_wpredict 0.86162420,

prob_npredict 0.86020214, cycle_period 0

Finished.

$ cat td-learn/5_out.rg

S: "a" .

| "c" . .

| "d" . . .

| "b" . ("a" .

| "b"

| "c" . .

| "d" .

)

;

$ cat td-learn/5_out.pcfg

S: "c" "b" "c" [0.45601921] // 1519 1.00000000

| "d" "b" "b" "d" [0.27199039] // 906 1.00000000

| "a" "a" [0.27199039] // 906 0.98432332

; // 3331

$./topdown -i-1 --os=seq/5_random.seq --oo=- gram/5.rg seq/5-10k.seq

[0]: prob_gram 0.09789976, prob_term 0.11414445, prob_wpredict 0.53202818,

prob_npredict 0.44951466, cycle_period 1046

prob_epredict 0.44951466

$./topdown -i1 --os=seq/5_predict.seq --oo=- td-learn/5_out.rg seq/5-10k.seq

[0]: prob_gram 0.58674430, prob_term 1.00000000, prob_wpredict 0.86162420,

prob_npredict 0.86020214, cycle_period 0

prob_epredict 0.86020214

$./pcfg-predict-eval --prob-rand=0.44951466 gram/5.pcfg seq/5_predict.seq

{

"seq_len" : 9993,

"wpredict_max" : 8928.00000000,

"npredict_actual" : 8596,

"wpredict_rand" : 4492.0,

"prob_wpredict_max" : 0.89342540,

"prob_npredict_actual" : 0.86020214,

"prob_npredict_rand" : 0.44951466,

"efficiency_rand, %" : 92.5

}

Example 6
$ cat gram/6.pcfg

Chapter 7: Example Programs 303

S: B C

| B D D

| B E E E

;

B: "a" "b"

| "b" "b"

;

C: "a" "c"

| "c" "c"

;

D: "a" "d"

| "d" "d"

;

E: "a" "e"

| "e" "e"

;

$./pcfg-generate-seq -i1 -n10000 -o seq/6-10k.seq gram/6.pcfg

$ cat gram/6.rg

S: (. .

| . .

) (. .

| . . (. . | . .)

| . . (. . | . .) (. . | . .)

| . (.

| . (. . | . .)

| . (. . | . .) (. . | . .)

)

)

;

$./topdown -i1 --det-niter-goal=50 --od=td-learn/6_det.rg \

--oo=td-learn/6.log gram/6.rg seq/6-10k.seq

$./topdown -i1 --od=td-learn/6_out.rg --op=td-learn/6_out.pcfg \

--oo=- --simplify td-learn/6_det.rg seq/6-10k.seq

Iteration 1:

P: prob_gram 0.67366441, prob_term 1.00000000, prob_wpredict 0.71232218,

prob_npredict 0.69303861, cycle_period 0

T: prob_gram 0.67366441, prob_term 1.00000000, prob_wpredict 0.71232218,

prob_npredict 0.69303861, cycle_period 0

Finished.

$ cat td-learn/6_out.rg

S: (["a" "d"] .

| [^ "a" "d"] .

) ("c" .

| "a" ("c"

| "d" (["d" "e"] .

| [^ "d" "e"] .

)

| [^ "c" "d"] (["a" "d"] .

| [^ "a" "d"] .

) (["a" "c"] .

| [^ "a" "c"] .

)

)

| ["b" "e"] . (["b" "e"] .

| [^ "b" "e"] .

Chapter 7: Example Programs 304

) (["b" "e"] .

| [^ "b" "e"] .

)

| "d" . ("d" .

| [^ "d"] .

)

)

;

$ cat td-learn/6_out.pcfg

S: _S_1C _S_4C // 1656

;

_S_1C: "b" "b" [0.50815710] // 841 1.00000000

| "a" "b" [0.49184290] // 814 1.00000000

; // 1655

_S_4C: "c" "c" [0.14984894] // 248 1.00000000

| "a" _S_18C [0.51359517] // 850

| "d" "d" _S_7C [0.16858006] // 279

| "e" "e" _S_11C _S_14C [0.16797583] // 278

; // 1655

_S_18C: "c" [0.33294118] // 283 0.68164313

| "e" _S_25C _S_28C [0.33764706] // 287

| "d" _S_21C [0.32941176] // 280

; // 850

_S_7C: "a" "d" [0.48387097] // 135 0.57821486

| "d" "d" [0.51612903] // 144 0.55236707

; // 279

_S_11C: "a" "e" [0.43165468] // 120 0.54568383

| "e" "e" [0.56834532] // 158 0.52474574

; // 278

_S_14C: "a" "e" [0.55395683] // 154 0.57523873

| "e" "e" [0.44604317] // 124 0.51524157

; // 278

_S_25C: "a" "e" [0.50174216] // 144 0.56578471

| "e" "e" [0.49825784] // 143 0.52027022

; // 287

_S_28C: "a" "e" [0.44599303] // 128 0.55197805

| "e" "e" [0.55400697] // 159 0.52505997

; // 287

_S_21C: "a" "d" [0.50357143] // 141 0.58532179

| "d" "d" [0.49642857] // 139 0.54879361

; // 280

$./topdown -i-1 --os=seq/6_random.seq --oo=- gram/6.rg seq/6-10k.seq

[0]: prob_gram 0.29432358, prob_term 0.15145104, prob_wpredict 0.57901006,

prob_npredict 0.55841168, cycle_period 298

prob_epredict 0.55841168

$./topdown -i1 --os=seq/6_predict.seq --oo=- td-learn/6_out.rg seq/6-10k.seq

[0]: prob_gram 0.67366441, prob_term 1.00000000, prob_wpredict 0.71232218,

prob_npredict 0.69303861, cycle_period 0

prob_epredict 0.69303861

Chapter 7: Example Programs 305

$./pcfg-predict-eval --prob-rand=0.55841168 gram/6.pcfg seq/6_predict.seq

{

"seq_len" : 9998,

"wpredict_max" : 6931.83333333,

"npredict_actual" : 6929,

"wpredict_rand" : 5583.0,

"prob_wpredict_max" : 0.69332200,

"prob_npredict_actual" : 0.69303861,

"prob_npredict_rand" : 0.55841168,

"efficiency_rand, %" : 99.8

}

Example 7
$ cat gram/7.pcfg

S: "a" B "a" "a" C "a"

;

B: "b" [0.67]

| "b" B [0.33]

;

C: "c" [0.67]

| "c" C [0.33]

;

$./pcfg-generate-seq -i1 -n1000 -o seq/7-1k.seq gram/7.pcfg

$ cat gram/7.rg

S: . (.*) . . (.*) .

;

$./topdown -i1 -n5000 --det-niter-goal=50 --od=td-learn/7_det.rg \

--oo=td-learn/7.log gram/7.rg seq/7-1k.seq

$./topdown -i1 -n5000 --od=td-learn/7_out.rg --op=td-learn/7_out.pcfg \

--oo=- --simplify td-learn/7_det.rg seq/7-1k.seq

Iteration 1:

P: prob_gram 0.75566371, prob_term 1.00000000, prob_wpredict 0.85044431,

prob_npredict 0.85060000, cycle_period 0

T: prob_gram 0.75566371, prob_term 1.00000000, prob_wpredict 0.85044431,

prob_npredict 0.85060000, cycle_period 0

Finished.

$ cat td-learn/7_out.rg

S: . ([^ "a"]*) "a" . ([^ "a"]*) "a"

;

$ cat td-learn/7_out.pcfg

S: "a" _S_2A "a" "a" _S_5A "a" // 712

;

_S_2A: _S_2A "b" [0.59371429] // 1039

| [0.40628571] // 711

; // 1750

_S_5A: _S_5A "c" [0.61083744] // 1116

| [0.38916256] // 711

; // 1827

Chapter 7: Example Programs 306

$./topdown -i-1 -n5000 --os=seq/7_random.seq --oo=- gram/7.rg seq/7-1k.seq

[0]: prob_gram 0.42542803, prob_term 0.31487706, prob_wpredict 0.56737304,

prob_npredict 0.56620000, cycle_period 32

prob_epredict 0.56620000

$./topdown -i1 -n5000 --os=seq/7_predict.seq --oo=- td-learn/7_out.rg seq/7-1k.seq

[0]: prob_gram 0.75566371, prob_term 1.00000000, prob_wpredict 0.85044431,

prob_npredict 0.85060000, cycle_period 0

prob_epredict 0.85060000

$./pcfg-predict-eval --prob-rand=0.56620000 gram/7.pcfg seq/7_predict.seq

{

"seq_len" : 5000,

"wpredict_max" : 4288.85000000,

"npredict_actual" : 4253,

"wpredict_rand" : 2831.0,

"prob_wpredict_max" : 0.85777000,

"prob_npredict_actual" : 0.85060000,

"prob_npredict_rand" : 0.56620000,

"efficiency_rand, %" : 97.5

}

Example 8
$ cat gram/8.pcfg

S: C B C B

| C C B B

| C B B C

;

B: "a" "b"

;

C: "a" "b" "c"

;

$./pcfg-generate-seq -i1 -n20000 -o seq/8-20k.seq gram/8.pcfg

$../scripts/mk-rg-vit.sh 5 5 2 | sed ’s/\./x/g;s/x/(. . | . . .)/g’ >gram/8.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/8_det.rg \

--oo=td-learn/8.log gram/8.rg seq/8-20k.seq

$./topdown -i1 --od=td-learn/8_out.rg --op=td-learn/8_out.pcfg \

--oo=- --simplify td-learn/8_det.rg seq/8-20k.seq

Iteration 1:

P: prob_gram 0.74853469, prob_term 1.00000000, prob_wpredict 0.89879166,

prob_npredict 0.89480000, cycle_period 0

T: prob_gram 0.74853469, prob_term 1.00000000, prob_wpredict 0.89879166,

prob_npredict 0.89480000, cycle_period 0

Finished.

$ cat td-learn/8_out.rg

S: "a" . ("a" .

| [^ "a"] . .

)

| "b" . . ("b" . .

| [^ "b"] .

)

| "c" . . ("a" .

| [^ "a"] . .

) ("a" .

Chapter 7: Example Programs 307

| [^ "a"] . .

) ("b" . .

| ("a" .

| "c" . .

)

)

;

$ cat td-learn/8_out.pcfg

S: "a" "b" _S_6C [0.60578599] // 1738

| "c" "a" "b" _S_10C _S_13C _L2_0_2C [0.39421401] // 1131

; // 2869

_L2_0_2C: "c" "a" "b" [0.62599469] // 708 0.54100980

| "a" "b" [0.37400531] // 423 0.50437077

; // 1131

_S_6C: "c" "a" "b" [0.75489068] // 1312 0.76096928

| "a" "b" [0.24510932] // 426 0.50443299

; // 1738

_S_10C: "c" "a" "b" [0.56233422] // 636 0.52972756

| "a" "b" [0.43766578] // 495 0.50598533

; // 1131

_S_13C: "a" "b" [0.81167109] // 918 0.52058558

| "c" "a" "b" [0.18832891] // 213 0.50111667

; // 1131

$./topdown -i-1 --os=seq/8_random.seq --oo=- gram/8.rg seq/8-20k.seq

[0]: prob_gram 0.27761329, prob_term 0.25220800, prob_wpredict 0.64575972,

prob_npredict 0.56240000, cycle_period 1986

prob_epredict 0.56240000

$./topdown -i1 --os=seq/8_predict.seq --oo=- td-learn/8_out.rg seq/8-20k.seq

[0]: prob_gram 0.74853469, prob_term 1.00000000, prob_wpredict 0.89879166,

prob_npredict 0.89480000, cycle_period 0

prob_epredict 0.89480000

$./pcfg-predict-eval --prob-rand=0.56240000 gram/8.pcfg seq/8_predict.seq

{

"seq_len" : 20000,

"wpredict_max" : 18687.33333333,

"npredict_actual" : 17896,

"wpredict_rand" : 11248.0,

"prob_wpredict_max" : 0.93436667,

"prob_npredict_actual" : 0.89480000,

"prob_npredict_rand" : 0.56240000,

"efficiency_rand, %" : 89.4

}

Example 9
$ cat gram/9.pcfg

S: "l" "a" "z" "y"

| "f" "o" "x"

| "f" "o" "x" "y"

;

$./pcfg-generate-seq -i1 -n5000 -o seq/9-5k.seq gram/9.pcfg

Chapter 7: Example Programs 308

$../scripts/mk-rg-vit.sh 5 5 2 >gram/9.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/9_det.rg \

--oo=td-learn/9.log gram/9.rg seq/9-5k.seq

$./topdown -i1 --od=td-learn/9_out.rg --op=td-learn/9_out.pcfg \

--oo=- --simplify td-learn/9_det.rg seq/9-5k.seq

Iteration 1:

P: prob_gram 0.51298943, prob_term 0.73410772, prob_wpredict 0.84928628,

prob_npredict 0.84733894, cycle_period 25

T: prob_gram 0.51298943, prob_term 0.73410772, prob_wpredict 0.84928628,

prob_npredict 0.84733894, cycle_period 25

Finished.

$ cat td-learn/9_out.rg

S: "a"

| "f" . .

| "l" . . .

| "o" .

| "y" . . .

| "z"

| "x" ("a" .

| "f" .

| "l" . .

| "x" . . .

| "y" . . .

| "o" . (["a" "x"]

| ["f" "l"] .

| "o" .

| ["y" "z"]

)

| "z" (["a" "f"]

| ["l" "z"] . .

| "o" .

| "x" . .

| "y" ("f"

| "l"

| [^ "f" "l"] .

)

)

)

;

$ cat td-learn/9_out.pcfg

S: "y" "f" "o" "x" [0.33406917] // 454 0.96864589

| "l" "a" "z" "y" [0.18469463] // 251 0.82502507

| "f" "o" "x" [0.32303164] // 439 0.73741149

| "y" "l" "a" "z" [0.15820456] // 215 0.50772377

; // 1359

$./topdown -i-1 --os=seq/9_random.seq --oo=- gram/9.rg seq/9-5k.seq

[0]: prob_gram 0.10270474, prob_term 0.12512651, prob_wpredict 0.54937340,

prob_npredict 0.45398159, cycle_period 727

prob_epredict 0.45398159

$./topdown -i1 --os=seq/9_predict.seq --oo=- td-learn/9_out.rg seq/9-5k.seq

[0]: prob_gram 0.51298943, prob_term 0.73410772, prob_wpredict 0.84928628,

prob_npredict 0.84733894, cycle_period 25

prob_epredict 0.84733894

Chapter 7: Example Programs 309

$./pcfg-predict-eval --prob-rand=0.45398159 gram/9.pcfg seq/9_predict.seq

{

"seq_len" : 4998,

"wpredict_max" : 4244.50000000,

"npredict_actual" : 4235,

"wpredict_rand" : 2269.0,

"prob_wpredict_max" : 0.84923970,

"prob_npredict_actual" : 0.84733894,

"prob_npredict_rand" : 0.45398159,

"efficiency_rand, %" : 99.5

}

Example 10
$ cat gram/10.pcfg

S: "c" "i" "l" "i"

| "c" "i" "r" "c"

| "c" "i" "t" "i"

| "l" "i" "b" "e"

| "l" "i" "f" "e"

| "l" "i" "v" "e"

| "v" "i" "l" "l"

| "v" "i" "r" "u"

| "v" "i" "v" "o"

;

$./pcfg-generate-seq -i1 -n20000 -o seq/10-20k.seq gram/10.pcfg

$../scripts/mk-rg-vit.sh 5 5 2 >gram/10.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/10_det.rg \

--oo=td-learn/10.log gram/10.rg seq/10-20k.seq

$./topdown -i1 --od=td-learn/10_out.rg --op=td-learn/10_out.pcfg \

--oo=- --simplify td-learn/10_det.rg seq/10-20k.seq

Iteration 1:

P: prob_gram 0.52678323, prob_term 0.82792186, prob_wpredict 0.67994868,

prob_npredict 0.66445000, cycle_period 46

T: prob_gram 0.52678323, prob_term 0.82792186, prob_wpredict 0.67994868,

prob_npredict 0.66445000, cycle_period 46

Finished.

$ cat td-learn/10_out.pcfg

S: "u" [0.09779863] // 542 1.00000000

| "l" "i" "f" "e" [0.10519668] // 583 0.68143890

| "l" "i" "v" "e" [0.10375316] // 575 0.67168311

| "l" "i" "b" "e" [0.09978347] // 553 0.64687799

| "v" "i" L3_1 [0.29718513] // 1647

| "c" "i" L3_0 [0.29628293] // 1642

; // 5542

L3_0: "t" "i" [0.33191230] // 545 1.00000000

| "l" "i" [0.33922046] // 557 0.54791091

| "r" "c" [0.32886724] // 540

; // 1642

L3_1: "l" "l" [0.31815422] // 524 0.95034312

| "r" [0.32908318] // 542 0.75046211

| "v" "o" [0.35276260] // 581

; // 1647

Chapter 7: Example Programs 310

$./topdown -i-1 --os=seq/10_random.seq --oo=- gram/10.rg seq/10-20k.seq

[0]: prob_gram 0.06153273, prob_term 0.04572241, prob_wpredict 0.46973201,

prob_npredict 0.38120000, cycle_period 2352

prob_epredict 0.38120000

$./topdown -i1 --os=seq/10_predict.seq --oo=- td-learn/10_out.rg seq/10-20k.seq

[0]: prob_gram 0.52678323, prob_term 0.82792186, prob_wpredict 0.67994868,

prob_npredict 0.66445000, cycle_period 46

prob_epredict 0.66445000

$./pcfg-predict-eval --prob-rand=0.38120000 gram/10.pcfg seq/10_predict.seq

{

"seq_len" : 20000,

"wpredict_max" : 13333.33333333,

"npredict_actual" : 13289,

"wpredict_rand" : 7624.0,

"prob_wpredict_max" : 0.66666667,

"prob_npredict_actual" : 0.66445000,

"prob_npredict_rand" : 0.38120000,

"efficiency_rand, %" : 99.2

}

Example 11
$ cat gram/11.pcfg

W: "h" "e" A [0.67]

| "d" [0.20]

| "i" "k" "j" [0.13]

;

A: "b" "f" "g" [0.67]

| "c" [0.33]

;

$./pcfg-generate-seq -i1 -n60000 -o seq/11-60k.seq gram/11.pcfg

$../scripts/mk-rg-vit.sh 5 5 3 2 >gram/11.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/11_det.rg \

--oo=td-learn/11.log gram/11.rg seq/11-60k.seq

$./topdown -i1 --od=td-learn/11_out.rg --op=td-learn/11_out.pcfg \

--oo=- --simplify td-learn/11_det.rg seq/11-60k.seq

Iteration 1:

P: prob_gram 0.68192993, prob_term 1.00000000, prob_wpredict 0.84267817,

prob_npredict 0.84210877, cycle_period 0

T: prob_gram 0.68192993, prob_term 1.00000000, prob_wpredict 0.84267817,

prob_npredict 0.84210877, cycle_period 0

Finished.

$ cat td-learn/11_out.rg

S: "c" . .

| "d"

| "e" . . .

| "f" .

| "i" . .

| "j"

| "k" .

Chapter 7: Example Programs 311

| "b" . . (["b" "d" "i" "j"]

| ["c" "e" "k"]

| ["f" "h"] .

| "g" .

)

| "g" (["c" "g"]

| "e" . . .

| "h" . . .

| ["i" "k"] .

| "j"

| "b" . (["b" "h"] .

| ["c" "d" "e" "f" "k"]

| ["g" "i" "j"]

)

| "d" ("b"

| "c"

| ["d" "k"] . .

| "g" .

| "h" . .

| "i" .

| ["e" "f"] (["b" "k"] .

| "c"

| "g"

| [^ "b" "c" "g" "k"] .

)

| "j" (["c" "i"] .

| "e"

| "k"

| [^ "c" "e" "i" "k"] .

)

)

| "f" . (["b" "c" "e" "k"]

| ["d" "f" "g" "j"]

| "h" .

| "i" .

)

)

| "h" . ("b" . .

| "c"

| ["g" "h"] .

| "j"

| ["d" "f"] (["b" "f" "i"] .

| ["c" "e" "k"]

| ["d" "g" "j"]

| "h" .

)

| ["e" "i" "k"] (["b" "h"] .

| ["c" "e" "j"]

| ["d" "f" "i" "k"]

| "g" .

)

)

;

$ cat td-learn/11_out.pcfg

S: "d" [0.19994171] // 3430 1.00000000

| "i" "k" "j" [0.12859225] // 2206 1.00000000

| "h" "e" L3_2 [0.67146604] // 11519

; // 17155

L3_2: "b" "f" "g" [0.66811355] // 7696 1.00000000

| "c" [0.33188645] // 3823 1.00000000

; // 11519

Chapter 7: Example Programs 312

$./topdown -i-1 --os=seq/11_random.seq --oo=- gram/11.rg seq/11-60k.seq

[0]: prob_gram 0.06708177, prob_term 0.07007359, prob_wpredict 0.59180247,

prob_npredict 0.55956131, cycle_period 3392

prob_epredict 0.55956131

$./topdown -i1 --os=seq/11_predict.seq --oo=- td-learn/11_out.rg seq/11-60k.seq

[0]: prob_gram 0.68192993, prob_term 1.00000000, prob_wpredict 0.84267817,

prob_npredict 0.84210877, cycle_period 0

prob_epredict 0.84210877

$./pcfg-predict-eval --prob-rand=0.55956131 gram/11.pcfg seq/11_predict.seq

{

"seq_len" : 59997,

"wpredict_max" : 50534.57999997,

"npredict_actual" : 50524,

"wpredict_rand" : 33572.0,

"prob_wpredict_max" : 0.84228511,

"prob_npredict_actual" : 0.84210877,

"prob_npredict_rand" : 0.55956131,

"efficiency_rand, %" : 99.9

}

Example 12
$ cat gram/12.pcfg

W: "h" "e" A [0.67]

| "d" [0.20]

| "i" "k" "j" [0.13]

;

A: "e" "h" "j" [0.67]

| "c" [0.33]

;

$./pcfg-generate-seq -i1 -n50000 -o seq/12-50k.seq gram/12.pcfg

$../scripts/mk-rg-vit.sh 5 5 3 2 >gram/12.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/12_det.rg \

--oo=td-learn/12.log gram/12.rg seq/12-50k.seq

$./topdown -i1 --od=td-learn/12_out.rg --op=td-learn/12_out.pcfg \

--oo=- --simplify td-learn/12_det.rg seq/12-50k.seq

Iteration 1:

P: prob_gram 0.68148827, prob_term 1.00000000, prob_wpredict 0.84273049,

prob_npredict 0.84161366, cycle_period 0

T: prob_gram 0.68148827, prob_term 1.00000000, prob_wpredict 0.84273049,

prob_npredict 0.84161366, cycle_period 0

Finished.

$ cat td-learn/12_out.rg

S: "c" . .

| "d"

| "e" . . .

| "i" . .

| "k" .

| "h" . (["c" "d"]

| "e" . .

| "h" .

| "k"

Chapter 7: Example Programs 313

| "i" (["c" "i" "k"]

| ["d" "j"]

| "e" .

| "h" .

)

| "j" (["d" "k"]

| "h" .

| [^ "d" "h" "k"]

)

)

| "j" ("c" . .

| "e" .

| "h" . . .

| ["i" "k"] .

| "j"

| "d" (["c" "j"]

| "e" .

| "i"

| "k" . .

| "d" ("j" .

| [^ "j"] .

)

| "h" ("d"

| "h" .

| "j"

| [^ "d" "h" "j"] .

)

)

)

;

$ cat td-learn/12_out.pcfg

S: "d" [0.20127148] // 2881 1.00000000

| "i" "k" "j" [0.12889479] // 1845 1.00000000

| "h" "e" L3_2 [0.66983373] // 9588

; // 14314

L3_2: "e" "h" "j" [0.66843972] // 6409 1.00000000

| "c" [0.33156028] // 3179 1.00000000

; // 9588

$./topdown -i-1 --os=seq/12_random.seq --oo=- gram/12.rg seq/12-50k.seq

[0]: prob_gram 0.07400547, prob_term 0.08506535, prob_wpredict 0.58199335,

prob_npredict 0.54272171, cycle_period 2917

prob_epredict 0.54272171

$./topdown -i1 --os=seq/12_predict.seq --oo=- td-learn/12_out.rg seq/12-50k.seq

[0]: prob_gram 0.68148827, prob_term 1.00000000, prob_wpredict 0.84273049,

prob_npredict 0.84161366, cycle_period 0

prob_epredict 0.84161366

Chapter 7: Example Programs 314

$./pcfg-predict-eval --prob-rand=0.54272171 gram/12.pcfg seq/12_predict.seq

{

"seq_len" : 49998,

"wpredict_max" : 42110.33999998,

"npredict_actual" : 42079,

"wpredict_rand" : 27135.0,

"prob_wpredict_max" : 0.84224049,

"prob_npredict_actual" : 0.84161366,

"prob_npredict_rand" : 0.54272171,

"efficiency_rand, %" : 99.8

}

Example 13
$ cat gram/13.pcfg

S: "b" "i" "g"

| "b" "l" "o" "c" "k"

| "c" "a" "n"

| "c" "i" "t" "y"

| "f" "l" "a" "t" "s"

| "l" "i" "v" "e"

| "o" "f"

| "o" "r"

| "p" "l" "a" "c" "e"

;

$./pcfg-generate-seq -i1 -n200000 -o seq/13-200k.seq gram/13.pcfg

$../scripts/mk-rg-vit.sh 5 5 6 2 >gram/13.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/13_det.rg \

--oo=td-learn/13.log gram/13.rg seq/13-200k.seq

$./topdown -i1 --od=td-learn/13_out.rg --op=td-learn/13_out.pcfg \

--oo=- --simplify td-learn/13_det.rg seq/13-200k.seq

Iteration 1:

P: prob_gram 0.41187581, prob_term 0.80798925, prob_wpredict 0.67095166,

prob_npredict 0.66774834, cycle_period 50

T: prob_gram 0.41187581, prob_term 0.80798925, prob_wpredict 0.67095166,

prob_npredict 0.66774834, cycle_period 50

Finished.

$ cat td-learn/13_out.pcfg

S: "f" "l" "a" "t" "s" [0.10194937] // 6166 1.00000000

| "l" "i" "v" "e" [0.10051090] // 6079 1.00000000

| "p" "l" "a" "c" "e" [0.10041170] // 6073 1.00000000

| "o" "f" [0.10112267] // 6116 0.75675161

| "b" "i" "g" [0.10049437] // 6078 0.75484298

| "b" "l" "o" [0.09920471] // 6000 0.74515702

| "o" "r" [0.09842761] // 5953 0.74324839

| "c" L4_0 [0.29787867] // 18016

; // 60481

L4_0: "i" "t" "y" [0.33681172] // 6068 1.00000000

| "k" [0.33303730] // 6000 1.00000000

| "a" "n" [0.33015098] // 5948 1.00000000

; // 18016

$./topdown -i-1 --os=seq/13_random.seq --oo=- gram/13.rg seq/13-200k.seq

[0]: prob_gram 0.02762080, prob_term 0.01906085, prob_wpredict 0.42107691,

prob_npredict 0.34680173, cycle_period 17775

prob_epredict 0.34680173

Chapter 7: Example Programs 315

$./topdown -i1 --os=seq/13_predict.seq --oo=- td-learn/13_out.rg seq/13-200k.seq

[0]: prob_gram 0.41187581, prob_term 0.80798925, prob_wpredict 0.67095166,

prob_npredict 0.66774834, cycle_period 50

prob_epredict 0.66774834

$./pcfg-predict-eval --prob-rand=0.34680173 gram/13.pcfg seq/13_predict.seq

{

"seq_len" : 199999,

"wpredict_max" : 139543.38888876,

"npredict_actual" : 133549,

"wpredict_rand" : 69360.0,

"prob_wpredict_max" : 0.69772043,

"prob_npredict_actual" : 0.66774834,

"prob_npredict_rand" : 0.34680173,

"efficiency_rand, %" : 91.5

}

Example 14
$ cat gram/14.pcfg

S: "a"

| "b" "i" "g"

| "c" "a" "n"

| "c" "i" "t" "y"

| "i" "f"

| "i" "n"

| "i" "s"

| "l" "i" "v" "e"

| "o" "f"

| "o" "r"

| "t" "h" "e"

| "t" "h" "e" "n"

| "y" "o" "u"

;

$./pcfg-generate-seq -i1 -n500000 -o seq/14-500k.seq gram/14.pcfg

$../scripts/mk-rg-vit.sh 4 4 8 3 2 >gram/14.rg

$./topdown -i1 --det-niter-goal=50 --od=td-learn/14_det.rg \

--oo=td-learn/14.log gram/14.rg seq/14-500k.seq

$./topdown -i1 --od=td-learn/14_out.rg --op=td-learn/14_out.pcfg \

--oo=- --simplify td-learn/14_det.rg seq/14-500k.seq

Iteration 1:

P: prob_gram 0.37807376, prob_term 0.80251636, prob_wpredict 0.56529371,

prob_npredict 0.56393626, cycle_period 52

T: prob_gram 0.37807376, prob_term 0.80251636, prob_wpredict 0.56529371,

prob_npredict 0.56393626, cycle_period 52

Finished.

$ cat td-learn/14_out.rg

S: ["a" "n"]

| "b" . .

| "e"

| "g"

| "l" . . .

| "o" .

| ["r" "s"]

| "t" . .

| "u"

| "y" . .

Chapter 7: Example Programs 316

| "c" . (["a" "e" "g" "i" "r" "s" "u"]

| ["b" "l" "t"] .

| ["c" "f" "n" "o"]

| ["h" "v" "y"] .

)

| "f" (["b" "l" "t"] . .

| "c" . .

| ["f" "n"]

| ["h" "o"] .

| ["r" "u"]

| "y" . .

| ["a" "e"] (["a" "c" "e" "f" "r" "s"]

| ["b" "h" "l" "u" "y"] .

| ["g" "i" "n" "o"]

| ["t" "v"] .

)

| ["g" "i"] (["a" "h" "l" "o"] .

| ["b" "e" "t" "y"] .

| ["c" "f" "s" "u" "v"]

| ["g" "i" "n" "r"]

)

| ["s" "v"] (["a" "f" "o" "s" "v"]

| ["b" "r" "t" "y"] .

| ["c" "g" "l"] .

| ["e" "h" "i" "n" "u"]

)

)

| "h" . (["a" "g" "o" "r" "s" "u"]

| ["b" "f" "i" "n"]

| ["c" "h" "l" "t" "v"] .

| ["e" "y"] .

)

| "i" (["a" "o"] .

| ["b" "l" "y"] . .

| "f"

| ["g" "r" "s"]

| "h" .

| "i" . .

| ["n" "u"]

| "t" . .

| ["c" "v"] (["a" "e" "g" "n" "u" "v"]

| ["b" "h" "i" "l"] .

| ["c" "f" "o" "r" "s" "y"]

| "t" .

)

| "e" (["a" "f" "i" "o" "r" "s"]

| ["b" "e" "g" "h" "l"] .

| ["c" "t"] .

| ["n" "u" "v" "y"]

)

)

| "v" . (["a" "f" "g" "n" "o" "r"]

| ["b" "c" "h" "l" "t"] .

| ["e" "v" "y"] .

| ["i" "s" "u"]

)

;

$ cat td-learn/14_out.pcfg

317

S: "t" "h" "e" [0.14164605] // 28337 1.00000000

| "l" "i" "v" "e" [0.07155532] // 14315 1.00000000

| "y" "o" "u" [0.07155032] // 14314 1.00000000

| "b" "i" "g" [0.07103547] // 14211 1.00000000

| "o" "r" [0.07153033] // 14310 0.75098025

| "o" "f" [0.07125041] // 14254 0.74901975

| "a" [0.07254505] // 14513 0.50226397

| "n" [0.07140036] // 14284 0.41440292

| "i" L3_5 [0.21334133] // 42680

| _S_9T2 L2_1 [0.14414536] // 28837

; // 200055

L2_1: "t" "y" [0.49783265] // 14356 1.00000000

| "n" [0.50216735] // 14481 0.66868579

; // 28837

L3_5: "s" [0.33348172] // 14233 1.00000000

| "f" [0.33479381] // 14289 0.75030656

| "n" [0.33172446] // 14158 0.66492323

; // 42680

_S_9T2: "c" "a" [0.50216735] // 14481 0.75216731

| "c" "i" [0.49783265] // 14356 0.74783269

; // 28837

$./topdown -i-1 --os=seq/14_random.seq --oo=- gram/14.rg seq/14-500k.seq

[0]: prob_gram 0.02347492, prob_term 0.01601129, prob_wpredict 0.37750950,

prob_npredict 0.34332737, cycle_period 23482

prob_epredict 0.34332737

$./topdown -i1 --os=seq/14_predict.seq --oo=- td-learn/14_out.rg seq/14-500k.seq

[0]: prob_gram 0.37807376, prob_term 0.80251636, prob_wpredict 0.56529371,

prob_npredict 0.56393626, cycle_period 52

prob_epredict 0.56393626

$./pcfg-predict-eval --prob-rand=0.34332737 gram/14.pcfg seq/14_predict.seq

{

"seq_len" : 499998,

"wpredict_max" : 296584.89743626,

"npredict_actual" : 281967,

"wpredict_rand" : 171663.0,

"prob_wpredict_max" : 0.59317217,

"prob_npredict_actual" : 0.56393626,

"prob_npredict_rand" : 0.34332737,

"efficiency_rand, %" : 88.3

}

318

8 Auxiliary Programs

This chapter describes auxiliary programs, which are not part of core QSMM functionality.
This manual does not include the source code of these auxiliary programs. The source code is
available in the directory samples in the package distribution. The command make install

does not install the auxiliary programs.

8.1 pcfg-generate-seq

This program generates a random terminal symbol sequence according to a specified PCFG.
The program expands the start nonterminal symbol of this PCFG to produce a parse unit. If
sequence limit not reached, the program repeats expanding the start nonterminal symbol.

In the usual case, invoke the program using the command line
$ pcfg-generate-seq -i random_seed -n len_term -o SYM_SEQ_FILE PCFG_FILE

The parameter random seed specifies a seed for the pseudo-random number generator. The
parameter len term specifies the number of terminal symbols in a generated sequence. By
default, if the generated sequence does not end on parse unit boundary, the program shortens
the sequence to make it contain an integer number of parse units.

The parameter SYM SEQ FILE specifies an output file for the generated sequence. If the
option -o SYM_SEQ_FILE is absent, or SYM SEQ FILE is ‘-’, the program dumps the generated
sequence to stdout. By default, the output consists of (unquoted) terminal symbols separated
by spaces with right margin column 70.

The parameter PCFG FILE specifies an input file containing a PCFG. If PCFG FILE is ‘-’,
the program reads the PCFG from stdin. An example PCFG is below:

cat >sample.pcfg <<EOF

S: "a" [0.5]

| "b" "b" [0.33]

| "c" "c" "c" D [0.17]

;

D: "delta"

| "delta" D

;

EOF

Nonterminal symbols are unquoted sequences of English letters, digits, and the characters
‘_’ starting with an English letter or ‘_’. Terminal symbols are quoted (using single or double
quotation marks) sequences of characters. Use the escape character ‘\’ to insert a single or
double quotation mark or ‘\’ into a terminal symbol.

Every set of right-hand sides of productions for a nonterminal symbol at the left-hand side
starts with this nonterminal symbol followed by the character ‘:’ and ends with the character
‘;’. A nonterminal symbol at the left-hand side of the first production in a PCFG is the start
nonterminal symbol of this PCFG. You can delimit by the characters ‘|’ the right-hand sides
of productions with the same nonterminal symbol at their left-hand side. However, you can
also specify those productions as separate ones ending with ‘;’. You can specify the relative
probability of a production in square brackets after its right-hand side before ‘|’ or ‘;’. The
default relative probability is 1.

Example output is below:
$ pcfg-generate-seq -i1 -n100 -o sample.seq sample.pcfg

$ cat sample.seq

a c c c delta delta delta a a c c c delta a a a a a a b b a c c c

delta delta delta a b b b b a a c c c delta a b b b b c c c delta a b

b a a c c c delta b b b b b b c c c delta delta a b b b b c c c delta

delta delta delta b b a a a a c c c delta delta b b a b b c c c delta

Chapter 8: Auxiliary Programs 319

The program supports the following command-line options:

-l INT The maximum length of an output terminal symbol sequence, in characters. That
length includes newline characters and delimiters between terminal symbols. No
limit by default.

-n INT The maximum length of an output terminal symbol sequence, in terminal symbols.
No limit by default.

-N INT The maximum length of an output terminal symbol sequence, in parse units. No
limit by default.

-o FILE Output a generated terminal symbol sequence to FILE. If FILE is ‘-’, output the
generated sequence to stdout. By default, output the sequence to stdout.

-R, --margin-right=INT

If possible, limit the length of every line in an output terminal symbol sequence by a
specified number of characters. Special value 0 means no right margin. The default
value is 70.

-i, --seed=INT

A seed for the pseudo-random number generator. The default value is 0.

--separate-parse-units

If there is a right margin, separate generated parse units with empty lines. If there
is no right margin, start every parse unit on a new line. The option -R, --margin-

right=INT sets or removes the right margin. By default, do not separate generated
parse units in a special way.

--separator-term=STR

Separate terminal symbols using a specified string. By default, separate the terminal
symbols by spaces.

--truncate[=no|parse-unit|term]

The mode of truncation of a generated character sequence if its length exceeds
maximum length specified by the options -l INT, -n INT, and -N INT:

‘no’ Ensure that the generated character sequence ends with a complete
parse unit.

‘parse-unit’
Permit the truncation of last parse unit in the generated character se-
quence but ensure that the sequence ends with a complete terminal
symbol name.

‘term’ Permit the truncation of last terminal symbol name in the generated
character sequence.

If the option argument not specified, the program uses --truncate=parse-unit. If
the option not specified, the program ensures that the generated character sequence
ends with a complete parse unit.

You need to pass at least one option: -l INT, -n INT, or -N INT.

8.2 pcfg-predict-eval

This program evaluates the accuracy of prediction of every next symbol in a terminal symbol
sequence by comparing the number of correctly predicted terminal symbols with an upper bound
on the number of terminal symbols predictable using a specified PCFG.

Chapter 8: Auxiliary Programs 320

Invocation

Invoke the program using these command-line formats:

$ pcfg-predict-eval [options] PCFG_FILE ACTUAL_SEQ_FILE PREDICTED_SEQ_FILE

$ pcfg-predict-eval [options] PCFG_FILE COMBINED_SEQ_FILE

Input file name arguments:

PCFG FILE
A PCFG. Along with a terminal symbol sequence generated according to this PCFG,
specifies an upper bound on the number of correctly predicted terminal symbols.
See Section 8.1 [pcfg-generate-seq], page 318, for the PCFG format.

ACTUAL SEQ FILE
An actual terminal symbol sequence, that is, a terminal symbol sequence generated
according to a PCFG in PCFG FILE. The sequence consists of (unquoted) terminal
symbol names separated by spaces or newlines.

PREDICTED SEQ FILE
A predicted terminal symbol sequence to calculate prediction accuracy. The se-
quence consists of (unquoted) terminal symbol names separated by spaces or new-
lines. The number of terminal symbols in this sequence must be equal to the number
of terminal symbols in a sequence in ACTUAL SEQ FILE. Specify this parameter
equal to ACTUAL SEQ FILE to only calculate an upper bound on the number of
terminal symbols predictable in a terminal symbol sequence.

COMBINED SEQ FILE
A terminal symbol sequence combined from an actual terminal symbol sequence and
predicted terminal symbol sequence. The combined sequence consists of terminal
symbol pairs separated by spaces or newlines. The first element of a pair is a quoted
actual terminal symbol. The second element of a pair is a quoted predicted terminal
symbol or ‘?’ if the predicted terminal symbol is unknown. Use the escape character
‘\’ to insert ‘"’ or ‘\’ into a quoted terminal symbol name. Allowed delimiters
between the actual terminal symbol and predicted terminal symbol:

‘:’ Any actual terminal symbol and predicted terminal symbol.

‘==’ The actual terminal symbol equal to the predicted terminal symbol.

‘!=’ The actual terminal symbol different from the predicted terminal sym-
bol.

Example

Let us consider a simple example. Suppose, the PCFG

cat >predict_eval.pcfg <<EOF

S: "a" B "d"

;

B: "b"

| "c" "c"

;

EOF

has generated the terminal symbol sequence

cat >actual.seq <<EOF

a c c d a b d

EOF

Chapter 8: Auxiliary Programs 321

In that terminal symbol sequence, an upper bound on the number of predictable termi-
nal symbols is 6, as all 4 terminal symbols outside of subsequences ‘c c’ and ‘b’ are constant
according to the PCFG, the sum of average numbers of correctly predicted terminal symbols
at the second and sixth positions is 0.5+0.5=1, and the second ‘c’ always follows the first ‘c’
thereby adding 1 to the number of correctly predicted terminal symbols. An upper bound
on the number of predictable terminal symbols divided by sequence length is prob_wpredict_
max=6.0/7=0.85714286.

While reading that sequence, a test program was trying to predict the next terminal symbol
the PCFG generates. Suppose, the test program predicted the terminal symbol sequence

cat >predicted.seq <<EOF

a c b d a d d

EOF

In this terminal symbol sequence, the number of correctly predicted terminal symbols is 5,
because the terminal symbols ‘b’ and ‘d’ at the third and sixth positions differ from the terminal
symbols ‘c’ and ‘b’ at those positions in the actual terminal symbol sequence, and terminal
symbols at all other positions are equal. The number of correctly predicted terminal symbols
divided by sequence length is prob_npredict_actual=5.0/7=0.71428571.

Suppose, the test program was predicting this terminal symbol sequence using a learned
grammar obtained by determinizing the template regular expression grammar

S: ("a" | "b" | "c" | "d") | (("a" | "b" | "c" | "d") ("a" | "b" | "c" | "d"))

("a" | "b" | "c" | "d") | (("a" | "b" | "c" | "d") ("a" | "b" | "c" | "d"))

("a" | "b" | "c" | "d") | (("a" | "b" | "c" | "d") ("a" | "b" | "c" | "d"))

;

This template regular expression grammar makes it possible to predict each symbol in the
actual terminal symbol sequence with probability prob_npredict_rand=0.25, as each position
in the sequence has 4 possible symbols.

We evaluate the learning efficiency of a grammar by its ability to correctly predict
the next terminal symbols compared to the upper bound case and the random case:
efficiency_rand=(prob_npredict_actual-prob_npredict_rand)/(prob_wpredict_max-

prob_npredict_rand)*100%. For our example, we obtain efficiency_rand=76.5%:

$ pcfg-predict-eval --prob-rand=0.25 predict_eval.pcfg actual.seq predicted.seq

{

"seq_len" : 7,

"wpredict_max" : 6.00000000,

"npredict_actual" : 5,

"wpredict_rand" : 1.8,

"prob_wpredict_max" : 0.85714286,

"prob_npredict_actual" : 0.71428571,

"prob_npredict_rand" : 0.25000000,

"efficiency_rand, %" : 76.5

}

Instead of passing two sequences in the files actual.seq and predicted.seq, we can pass a
combined sequence:

$ cat >combined.seq <<EOF

"a"=="a" "c"=="c" "c"!="b" "d"=="d" "a"=="a" "b"!="d" "d"=="d"

EOF

$ pcfg-predict-eval --prob-rand=0.25 predict_eval.pcfg combined.seq

See Section 7.3.5 [Examples], page 295, demonstrating the use of pcfg-predict-eval pro-
gram to evaluate the quality of learned regular expression grammars.

Output Fields

The fields of JSON output have the following meaning:

Chapter 8: Auxiliary Programs 322

seq_len The number of terminal symbols in the actual or predicted terminal symbol se-
quence.

wpredict_max

An upper bound on the number of correctly predicted terminal symbols.

npredict_actual

The number of correctly predicted terminal symbols contained in the predicted
terminal symbol sequence.

npredict_ngram

The number of terminal symbols correctly predicted in the actual terminal symbol
sequence by applying an n-gram approach. The program prints this field on passing
the option --ngrams.

wpredict_rand

The number of correctly predicted terminal symbols in random mode. The program
prints this field on passing the option --prob-rand=FLOAT. This field is equal to
the argument of that option multiplied by the field seq_len.

prob_wpredict_max

This field is equal to wpredict_max/seq_len.

prob_npredict_actual

This field is equal to npredict_actual/seq_len.

prob_npredict_ngram

This field is equal to npredict_ngram/seq_len. The program prints this field on
passing the option --ngrams.

prob_npredict_rand

This field is equal to the argument of --prob-rand=FLOAT option. The program
prints the field on passing this option.

efficiency_ngram, %

This field is equal to (npredict_actual-npredict_ngram)*100/(wpredict_

max-npredict_ngram) except for the following special cases: if npredict_

actual<npredict_ngram, this field is equal to 0; if npredict_actual>wpredict_
max, this field is equal to 100. The program prints this field on passing the option
--ngrams.

efficiency_rand, %

This field is equal to (prob_npredict_actual-prob_npredict_rand)*100/(prob_
wpredict_max-prob_npredict_rand) except for the following special cases: if
prob_npredict_actual<prob_npredict_rand, this field is equal to 0; if prob_

npredict_actual>prob_wpredict_max, this field is equal to 100. The program
prints this field on passing the option --prob-rand=FLOAT.

Printing Processing Steps

Use the option --intermediate to get details about calculating an upper bound on the number
of correctly predicted terminal symbols when processing every terminal symbol from an actual
and predicted terminal symbol sequence. Example:

$ pcfg-predict-eval --intermediate predict_eval.pcfg actual.seq predicted.seq

step 0: actual "a", predicted "a", prob_max 1.00000000, npredict 1, wpredict_max 1.00000000

step 1: actual "c", predicted "c", prob_max 0.50000000, npredict 2, wpredict_max 1.50000000

step 2: actual "c", predicted "b", prob_max 1.00000000, npredict 2, wpredict_max 2.50000000

step 3: actual "d", predicted "d", prob_max 1.00000000, npredict 3, wpredict_max 3.50000000

step 4: actual "a", predicted "a", prob_max 1.00000000, npredict 4, wpredict_max 4.50000000

Chapter 8: Auxiliary Programs 323

step 5: actual "b", predicted "d", prob_max 0.50000000, npredict 4, wpredict_max 5.00000000

step 6: actual "d", predicted "d", prob_max 1.00000000, npredict 5, wpredict_max 6.00000000

{

"seq_len" : 7,

"wpredict_max" : 6.00000000,

"npredict_actual" : 5,

"prob_wpredict_max" : 0.85714286,

"prob_npredict_actual" : 0.71428571

}

For every pair of terminal symbols read from the actual and predicted terminal symbol
sequence, the program prints a line with the following fields:

step The index (position) of a terminal symbol in the actual or predicted terminal symbol
sequence. The indices start with 0.

actual A terminal symbol read from the actual terminal symbol sequence.

predicted

A terminal symbol read from the predicted terminal symbol sequence.

prob_max The probability of correct prediction of a terminal symbol in the field actual based
on all previous terminal symbols read from the actual terminal symbol sequence.

npredict The number of times terminal symbols in the fields actual and predicted were
equal (up to the current line).

wpredict_max

The sum of prob_max fields up to the current line.

Printing Survived Stacks

Use the option --dump-stacks along with --intermediate to print survived stacks of expanding
the start nonterminal symbol of a PCFG before processing every symbol from the actual terminal
symbol sequence and after processing last symbol from that sequence. Example:

$ pcfg-predict-eval --dump-stacks --intermediate predict_eval.pcfg actual.seq predicted.seq

1.00000000 "a" <- S [0]

step 0: actual "a", predicted "a", prob_max 1.00000000, npredict 1, wpredict_max 1.00000000

0.50000000 "b" <- B [1] <- S [0]

0.50000000 "c" <- B [1] <- S [0]

step 1: actual "c", predicted "c", prob_max 0.50000000, npredict 2, wpredict_max 1.50000000

1.00000000 "c" <- B [1] <- S [0]

step 2: actual "c", predicted "b", prob_max 1.00000000, npredict 2, wpredict_max 2.50000000

1.00000000 "d" <- S [0]

step 3: actual "d", predicted "d", prob_max 1.00000000, npredict 3, wpredict_max 3.50000000

1.00000000 "a" <- S [4]

step 4: actual "a", predicted "a", prob_max 1.00000000, npredict 4, wpredict_max 4.50000000

0.50000000 "b" <- B [5] <- S [4]

0.50000000 "c" <- B [5] <- S [4]

step 5: actual "b", predicted "d", prob_max 0.50000000, npredict 4, wpredict_max 5.00000000

1.00000000 "d" <- S [4]

Chapter 8: Auxiliary Programs 324

step 6: actual "d", predicted "d", prob_max 1.00000000, npredict 5, wpredict_max 6.00000000

1.00000000 "a" <- S [7]

The description of every survived stack (e.g. ‘0.50000000 "b" <- B [1] <- S [0]’) begins
with its probability followed by the content of this stack in reverse order—from a terminal
symbol to the start nonterminal symbol. Numbers in square brackets after nonterminal symbols
are indices of terminal symbols in the actual terminal symbol sequence initiated the expansions
of those nonterminal symbols.

Printing Possible Terminal Symbols

Use the option --dump-terms along with --intermediate to print the probabilities of possible
terminal symbols calculated before processing every symbol from the actual terminal symbol
sequence and after processing last symbol from that sequence. Example:

$ pcfg-predict-eval --dump-terms --intermediate predict_eval.pcfg actual.seq predicted.seq

1.00000000 "a" *

step 0: actual "a", predicted "a", prob_max 1.00000000, npredict 1, wpredict_max 1.00000000

0.50000000 "b" *

0.50000000 "c" *

step 1: actual "c", predicted "c", prob_max 0.50000000, npredict 2, wpredict_max 1.50000000

1.00000000 "c" *

step 2: actual "c", predicted "b", prob_max 1.00000000, npredict 2, wpredict_max 2.50000000

1.00000000 "d" *

step 3: actual "d", predicted "d", prob_max 1.00000000, npredict 3, wpredict_max 3.50000000

1.00000000 "a" *

step 4: actual "a", predicted "a", prob_max 1.00000000, npredict 4, wpredict_max 4.50000000

0.50000000 "b" *

0.50000000 "c" *

step 5: actual "b", predicted "d", prob_max 0.50000000, npredict 4, wpredict_max 5.00000000

1.00000000 "d" *

step 6: actual "d", predicted "d", prob_max 1.00000000, npredict 5, wpredict_max 6.00000000

1.00000000 "a" *

The description of a possible terminal symbol (e.g. ‘0.50000000 "b" *’) begins with its proba-
bility followed by the terminal symbol itself. If the probability is equal to a maximum probability
among the probabilities of all possible terminal symbols, the description ends with ‘*’. The field
prob_max is equal to this maximum probability.

For a correct actual terminal symbol sequence, its every terminal symbol must belong to a
set of possible terminal symbols calculated just before reading the terminal symbol from the
sequence. If the terminal symbol does not belong to this set, the program reports an error ‘step
INDEX: no expansion stacks survived on processing terminal symbol STRING’.

You can combine the option --dump-terms with --dump-stacks.

All Command-Line Options

The program pcfg-predict-eval supports the following command-line options:

Chapter 8: Auxiliary Programs 325

--dump-stacks

Print survived stacks of expanding the start nonterminal symbol of a PCFG. On
passing the option --intermediate, the program prints those stacks before pro-
cessing every symbol from the actual terminal symbol sequence and after processing
last symbol from that sequence. Without the option --intermediate, the program
prints those stacks survived after processing the last terminal symbol only. See
[Printing Survived Stacks], page 323, for more information. You can combine the
option --dump-stacks with --dump-terms. By default, do not print the survived
stacks.

--dump-terms

Print the probabilities of possible terminal symbols. On passing the option
--intermediate, the program prints those probabilities before processing every
symbol from the actual terminal symbol sequence and after processing last symbol
from that sequence. Without the option --intermediate, the program prints those
probabilities after processing the last terminal symbol only. See [Printing Possible
Terminal Symbols], page 324, for more information. You can combine the option
--dump-terms with --dump-stacks. By default, do not print possible terminal
symbols.

--intermediate

Print information about processing steps, survived stacks, and possible terminal
symbols for every processed symbol from the actual terminal symbol sequence. See
[Printing Processing Steps], page 322, for fields printed for every processing step. By
default, only print survived stacks and possible terminal symbols after processing
last terminal symbol.

-n INT Process not more than a specified number of symbols from the actual terminal
symbol sequence or predicted terminal symbol sequence or process not more than a
specified number of symbol pairs from the combined terminal symbol sequence. By
default, process all sequence symbols.

--ngrams Calculate the number of terminal symbols correctly predicted in the actual terminal
symbol sequence based on collected n-grams and calculate the efficiency (accuracy)
of prediction using this n-gram approach. This mode slows down processing terminal
symbol sequences. By default, do not apply the n-gram approach and print output
fields related to n-grams.

-o FILE Dump processing results to a specified file. By default, dump processing results to
stdout.

--prob-rand=FLOAT

The probability of a terminal symbol correctly predicted in random mode. This
is a lower bound to compare with the probability of a terminal symbol correctly
predicted in adaptive mode for calculating prediction efficiency (accuracy). By
default, do not calculate prediction efficiency relative to the probability of a terminal
symbol correctly predicted in random mode.

-R, --margin-right=INT

If possible, limit the length of every line of printed processing results by a specified
number of characters. By default, do not limit the line lengths.

8.3 mk-rg-vit.sh

This script generates template regular expression grammars for segmenting symbol sequences
into words. The script has the following command-line format:

$ mk-rg-vit.sh max_word_len max_segment_len n_prod_1 ... n_prod_N

Chapter 8: Auxiliary Programs 326

Script arguments:

max word len
Maximum word length in terminal symbols.

max segment len
Maximum word segment length in terminal symbols. A word segment is a sequence
of ‘.’ inside a regular expression. The word segment corresponds to a part of a word.
Specify this argument equal to max word len to generate word segments with all
allowed lengths.

n prod I The maximum number of possible terminal symbols to consider at position I in a
word. Each possible terminal symbol determines parsing the remaining part of this
word. For all J>I, if arguments n prod J are absent on the command line, the script
considers them equal to n prod I.

The script dumps a generated regular expression grammar to stdout.

Example:

$ mk-rg-vit.sh 4 3 2

S: .

| .

| . L3_0

| . L3_1

| . .

| . .

| . . L2_0

| . . L2_1

| . . .

| . . .

;

L2_0: .

| .

| . .

| . .

;

L2_1 = L2_0 ;

L3_0: .

| .

| . (.

| .

| . .

| . .

)

| . (.

| .

| . .

| . .

)

| . .

| . .

| . . .

| . . .

;

L3_1 = L3_0 ;

Nonterminal symbols Li_j correspond to remaining parts of a word, where i is the maximum
length of a remaining part in terminal symbols, and j is the index of a copy of a remaining
part. To reduce the size of a generated grammar, it defines productions for copies with indices

Chapter 8: Auxiliary Programs 327

greater than 0 by shallow copying a production with index 0 (see [Shallow Production Copies],
page 280).

See Section 7.3.5 [Examples], page 295, for using the script mk-rg-vit.sh to generate tem-
plate regular expression grammars for grammar learning.

8.4 pcfg-reach

The purpose of this program is debugging removing unreachable productions from a PCFG and
simplifying it.

To remove unreachable productions from a PCFG, use the following command-line format:

$ pcfg-reach PCFG_FILE [RETAIN_NONT_1 ... RETAIN_NONT_n]

where PCFG FILE is the name of a file with the PCFG, and RETAIN NONT 1, ..., RE-
TAIN NONT n are nonterminal symbols to retain in a resulting PCFG even if they are un-
reachable. See Section 8.1 [pcfg-generate-seq], page 318, for the description of PCFG format.

Example:

$ cat >reachable.pcfg <<EOF

S: "s" A

| A A

;

A: "b"

| "a" "b"

;

B: "c"

| "b" C

;

C: "e"

| "d" B

;

EOF

$ pcfg-reach reachable.pcfg

S: "s" A

| A A

;

A: "b"

| "a" "b"

;

To remove unreachable productions from a PCFG and simplify it, use the command-line
format

$ pcfg-reach --simplify PCFG_FILE [RETAIN_NONT_1 ... RETAIN_NONT_n]

Example:

$ cat >simplify.pcfg <<EOF

S: "a"

| B

| C "s" C "s" C

| F F

;

B: "b"

| "b" "b"

;

C: "c" ;

D: ;

E: "e" "e" "e" ;

Chapter 8: Auxiliary Programs 328

F: D "d" D

| "d"

| "f" "f" E "f" "f"

;

EOF

$ pcfg-reach --simplify simplify.pcfg

S: "a"

| "b"

| "b" "b"

| "c" "s" "c" "s" "c"

| F F

;

F: "d"

| "f" "f" "e" "e" "e" "f" "f"

;

8.5 rege-asm

The purpose of this program is debugging generating an assembler program and context-free
grammar for a regular expression.

See [Dumping Assembler Programs], page 335, for example assembler programs generated for
regular expressions. See [Initial Context-Free Grammar], page 286, for an example context-free
grammar generated for regular expressions. Those regular expressions are at the right-hand
sides of productions of regular expression grammars.

The instruction set of a generated assembler program includes instructions for analyzing
look-ahead terminal symbols, consuming terminal symbols, incrementing the frequencies of pro-
ductions of a context-free grammar, transferring control to subroutines for parsing nonterminal
symbols, and returning control from those subroutines.

A sequence of subexpressions in a regular expression results in a sequence of code blocks for
those subexpressions in a generated assembler program. Assembler code blocks for ‘?’ and ‘*’
quantifiers and sets of alternatives separated by ‘|’ have specific structure.

8.5.1 Command-Line Format

Invoke the program using one of the following command-line formats:
$ rege-asm [--nterm-min=INT] [--dump-asm=extended] REGEX

$ rege-asm --dump-gram[=specific|replace] [--recurs=right] REGEX

$ rege-asm --dump-stats REGEX

The argument REGEX is a regular expression. The first format is for dumping an assembler
program for the regular expression. The second format is for dumping a context-free grammar
for the regular expression. The third format is for dumping statistics on the regular expression.
Refer to [General Production Format], page 277, for the syntax of regular expressions.

The program rege-asm supports the following command-line options:

--dump-asm[=simple|extended]

Dump an assembler program for probabilistic parsing a terminal symbol sequence
according to the regular expression:

‘simple’ Dump a simple assembler program. The regular expression may not
contain terminal symbol classes and specific terminal symbols, but it
may contain ‘.’.

‘extended’
Dump an assembler program containing instructions for setting up a
correspondence between parts of this assembler program and the pro-
ductions of a context-free grammar for the regular expression. The

Chapter 8: Auxiliary Programs 329

expression may contain terminal symbol classes and specific terminal
symbols.

If the option argument not specified, the program rege-asm uses --dump-

asm=simple. If the option not specified, the program rege-asm does not dump the
assembler program.

--dump-gram[=specific|dot|replace]

Dump a context-free grammar for the regular expression:

‘specific’
Dump the grammar with the following subexpressions replaced with
auxiliary nonterminal symbols _E_iT and _E_iTj: individual terminal
symbol classes, individual ‘.’, and the sequences (groups) of specific
terminal symbols, terminal symbol classes, and ‘.’ with lengths greater
than 1.

‘dot’ Dump the grammar with the following subexpressions replaced with
auxiliary nonterminal symbols _E_iT and _E_iTj: individual terminal
symbol classes and the sequences (groups) of specific terminal symbols,
terminal symbol classes, and ‘.’ with lengths greater than 1.

‘replace’ Dump the grammar with any sequences (groups) of specific terminal
symbols, terminal symbol classes, and ‘.’ replaced with auxiliary non-
terminal symbols _E_iT and _E_iTj.

In _E_iT and _E_iTj, i is the ordinal number of an auxiliary nonterminal symbol,
and j is sequence length if it is greater than 1.

If the option argument not specified, the program uses --dump-gram=dot. If the
option not specified, the program does not dump the context-free grammar.

--dump-stats

Dump statistics on the regular expression.

--nterm-min=INT

The minimum number of terminal symbols. On passing the option --dump-

asm=extended, the program rege-asm generates an assembler program referencing
terminal symbols contained in the regular expression. Pass the option --nterm-

min=INT to generate an assembler program for a larger set of terminal symbols
or generate an assembler program for a specified number of terminal symbols on
passing the option --dump-asm=simple. The default minimum number of terminal
symbols for generated assembler programs is 2.

--recurs=left|right

Recursion type for the productions of a context-free grammar dumped on passing the
option --dump-gram[=specific|dot|replace]: left or right. By default, generate
left-recursive productions.

8.5.2 Assembler Instruction Set

Assembler programs for adaptive parsing terminal symbol sequences consist of jmp, jprob, and
joe built-in instructions, choice instruction blocks, and user instructions described in this
subsection.

abrt Instruction

This instruction signals a parse error—encountering an unexpected look-ahead terminal symbol.
On executing this instruction, the program topdown aborts parsing a training terminal symbol
sequence and dumps a parse stack trace for a current expansion of a start nonterminal symbol
to help understand the reason of this error. The instruction does not have arguments.

Chapter 8: Auxiliary Programs 330

call Instruction

This instruction has the syntax

call NONT, ORD

The instruction calls an assembler routine for parsing a nonterminal symbol NONT. Execu-
tion continues after this instruction on finishing parsing the nonterminal symbol. The argument
ORD is the ordinal number of an AST node for the nonterminal symbol in an AST for a regu-
lar expression. The program topdown uses that ordinal number to mark a part of this regular
expression containing a parse error in a stack trace dumped on executing an abrt instruction.

Example:

call A, 2

This instruction calls an assembler routine for parsing the nonterminal symbol A. The AST

node of an occurrence of that nonterminal symbol in a regular expression has ordinal number 2.

peek Instruction

This instruction has the syntax

peek ORD

The instruction analyzes a look-ahead symbol from a training terminal symbol sequence
and returns an outcome equal to the numeric identifier of this look-ahead terminal symbol.
The argument ORD is the ordinal number of an AST node for a ‘?’ or ‘*’ quantifier or a
set of alternatives separated by ‘|’ requiring look-ahead terminal symbol analysis to select a
branch for transferring control. The program topdown uses that ordinal number to mark a
regular expression part containing a parse error in a stack trace dumped on executing an abrt

instruction.

Example:

peek 3

This instruction returns the identifier of the next terminal symbol from a training terminal
symbol sequence to select a control transfer target for an AST node with ordinal number 3.

prod Instruction

This instruction has the syntax

prod NONT_QUOTED, RHS

The instruction increments the frequency of a production from a context-free grammar for a
regular expression and updates the spur accordingly. The production has a nonterminal symbol
NONT QUOTED specified in double quotation marks at the left-hand side and a right-hand
side with zero-based index RHS.

Example:

prod "B", 4

This instruction increments the frequency of a production with the nonterminal symbol B at
the left-hand side and the fifth right-hand side for that nonterminal symbol.

putback Instruction

This instruction has the syntax

putback NTERM

The instruction rewinds the current processing position in a training terminal symbol se-
quence NTERM terminal symbols back. This instruction is for processing terminal symbol
sequences in put-back mode (see [Put-back Terminal Symbols], page 282).

Chapter 8: Auxiliary Programs 331

Example:

putback 5

This instruction decrements the current processing position in a training terminal symbol
sequence by five.

rd Instruction

This instruction has a short and long form:

rd LENGTH

rd NONT_QUOTED, RHS, POS, LENGTH

The option --dump-asm[=simple] dumps an assembler program with rd instructions in the
short form. The option --dump-asm=extended dumps an assembler program with rd instruc-
tions in the long form. The program topdown uses rd instructions in the long form.

The instruction consumes LENGTH symbols from a training terminal symbol sequence—
increments the current position in the training sequence by LENGTH.

Optionally, the instruction increments the frequency of a production with an auxiliary nonter-
minal symbol _X_iT or _X_iTj at the left-hand side and a consumed terminal symbol sequence
at the right-hand side and updates the spur accordingly. The parameters NONT QUOTED,
RHS, and POS identify this auxiliary nonterminal symbol in the right-hand side of a production
of a context-free grammar for a regular expression.

The parameter NONT QUOTED is a nonterminal symbol specified in double quotation
marks and located at the left-hand side of a production that contains the auxiliary nonterminal
symbol. The parameter RHS is the index of a right-hand side containing the auxiliary nonter-
minal symbol. The parameter POS is the position of this auxiliary nonterminal symbol in the
right-hand side.

Example:

rd "E", 2, 3, 4

This instruction consumes a sequence of four terminal symbols from a training terminal
symbol sequence. Additionally, the instruction increments the frequency of a production for an
auxiliary nonterminal symbol at the left-hand side and the consumed terminal symbol sequence
at the right-hand side. The occurrence of this auxiliary nonterminal symbol is at zero-based
position 3 in a right-hand side at zero-based index 2 for the nonterminal symbol E at the left-
hand side. For example, this auxiliary nonterminal symbol could be the symbol _E_2T4 in the
following excerpt of a context-free grammar:

E: A

| B

| _E_1T C C _E_2T4 D

;

ret Instruction

This instruction finishes the execution of an assembler routine parsing a nonterminal symbol. A
caller assembler routine continues parsing a parent nonterminal symbol. If the assembler routine
is a topmost routine parsing a start nonterminal symbol, the program topdown calls this routine
again to repeat parsing the start nonterminal symbol. The instruction does not have arguments.

8.5.3 Assembler Program Structure

An assembler program is a sequence of blocks.

In a sequence of blocks, every block is either a primitive block or a complex block. A prod

instruction can precede the sequence of blocks. A ret instruction can follow the sequence of
blocks. The sequence of blocks can consist of a single block.

Chapter 8: Auxiliary Programs 332

A primitive block is a call instruction or rd instruction. A putback instruction can follow
the rd instruction.

A complex block corresponds to a ‘?’ or ‘*’ quantifier or a set of alternatives separated by ‘|’.
Every complex block begins with a look-ahead analysis sub-block. Every alternative separated
by ‘|’ or subexpression under the ‘?’ or ‘*’ quantifier is a sequence of blocks.

Look-ahead Analysis Sub-block

A look-ahead analysis sub-block provides branching based on a look-ahead terminal symbol.
The sub-block has the following general structure:

; Look-ahead terminal symbol analysis, where blockIdx is the index

; of this look-ahead analysis sub-block in an assembler program. In

; labels tblockIdx_termIdxI, ‘t’ means "terminal".

peek ORD ; Set the outcome equal to

; the identifier of a

; look-ahead terminal symbol

joe termIdx1, tblockIdx_termIdx1 ; Terminal symbol id termIdx1

...

joe termIdxN, tblockIdx_termIdxN ; Terminal symbol id termIdxN

abrt ; Unexpected terminal symbol

; Branching for a look-ahead terminal symbol with id termIdx1,

; where probEq1 is equal to 1.0/n1.

tblockIdx_termIdx1:

choice

case probEq1, branch1_1

...

case probEq1, branch1_n1-1

end choice

jmp branch1_n1

...

; Branching for a look-ahead terminal symbol with id termIdxN,

; where probEqN is equal to 1.0/nN.

tblockIdx_termIdxN:

choice

case probEqN, branchN_1

...

case probEqN, branchN_nN-1

end choice

jmp branchN_nN

If a set of expected look-ahead terminal symbols is equal to a set of all possible terminal
symbols, the abrt instruction is unnecessary. In this case, the following instruction replaces
that abrt instruction:

Chapter 8: Auxiliary Programs 333

jmp tblockIdx_termIdxN+1 ; Terminal symbol id termIdxN+1

For only two possible branches, a branching sub-block looks like this:

tblockIdx_termIdxI:

jprob 0.5, branchI_1

jmp branchI_2

For only one possible branch, a joe instruction transfers control to that branch directly:

joe termIdxI, branchI ; Terminal symbol id termIdxI

Below there is an example look-ahead analysis sub-block for the expression ‘"a"|["a"
"b"]|["a" "b" "c"]’, where the set of all possible terminal symbols is { ‘a’, ‘b’, ‘c’ }.

; FIRST: ["a" "b" "c"]

peek 0

joe 0, t1_0 ; "a"

joe 1, t1_1 ; "b"

jmp a3 ; "c"

t1_0:

; "a"

choice

case 3.333333333333333E-01, a1

case 3.333333333333333E-01, a2

end choice

jmp a3

t1_1:

; "b"

jprob 0.5, a2

jmp a3

‘|’ Alternatives

A block for a set of alternatives separated by ‘|’ has the following structure:

; Look-ahead analysis sub-block transferring control to one of

; the labels aI0, aI1, ..., aIn, where ‘a’ means "alternative".

...

aI0: prod NONT_QUOTED, 0 ; Increment the frequency of a

; production for the alternative I0

; Assembler program part for the alternative I0.

...

jmp eJ

aI1: prod NONT_QUOTED, 1 ; Increment the frequency of a

; production for the alternative I1

; Assembler program part for the alternative I1.

...

jmp eJ

...

aIn: prod NONT_QUOTED, n ; Increment the frequency of a

; production for the alternative In

; Assembler program part for the alternative In.

...

Chapter 8: Auxiliary Programs 334

eJ: ; ‘e’ means "exit"

; Assembler program part for a subexpression following the set of

; alternatives separated by ‘|’.

‘?’ Quantifier

A block for the ‘?’ quantifier has the following structure:

; Look-ahead analysis sub-block transferring control to the

; label bI (‘b’ means "body") or sI (‘s’ means "skip").

...

sI: prod NONT_QUOTED, 0 ; Increment the frequency of an empty

; production on omitting the execution

; of the quantified subexpression

jmp eJ

bI: prod NONT_QUOTED, 1 ; Increment the frequency of a

; production corresponding to executing

; the quantified subexpression

; Assembler program part for the quantified subexpression.

...

eJ: ; ‘e’ means "exit"

; Assembler program part for a subexpression

; following the ‘?’ quantifier.

‘*’ Quantifier

A block for the ‘*’ quantifier has the following structure:

rJ: ; ‘r’ means "repeat"

; Look-ahead analysis sub-block transferring control to the

; label bI (‘b’ means "body") or sI (‘s’ means "skip").

...

bI: prod NONT_QUOTED, 1 ; Increment the frequency of a

; production corresponding to a repeat

; of the quantified subexpression

; Assembler program part for the quantified subexpression.

...

jmp rJ

sI: prod NONT_QUOTED, 0 ; Increment the frequency of an empty

; production on finishing repeating the

; quantified subexpression

; Assembler program part for a subexpression

; following the ‘*’ quantifier.

Chapter 8: Auxiliary Programs 335

8.6 rege-test

The purpose of this program is debugging parsing a regular expression grammar, dumping a
parsed grammar with optional printing its FIRST sets, simplifying the grammar, and dumping
assembler programs representing the nonterminal symbols of this grammar.

In this section, the command-line argument REGEX GRAMMAR FILE specifies the name
of a file containing a regular expression grammar. If that argument is ‘-’, the program reads
the regular expression grammar from stdin. See Section 7.3.1 [Template Grammar Format],
page 277, for the regular expression grammar format.

Examples further on in this section use the following test regular expression grammar:

cat >simple.rg <<EOF

S: (["a" "b"] C C .)? ["b" "c"] ;

C: . . ;

EOF

Dumping a Parsed Grammar

Invoke the program using the following command-line format to parse a regular expression
grammar and dump it:

$ rege-test [options] REGEX_GRAMMAR_FILE

Example:

$ rege-test simple.rg

S: (["a" "b"] C C .)? ["b" "c"]

;

C: . .

;

Dumping the FIRST Sets

Invoke the program using the following command-line format to print expected terminal symbols
at various locations in a regular expression grammar:

$ rege-test [options] --dump-first REGEX_GRAMMAR_FILE

The program dumps a loaded regular expression grammar containing its FIRST sets (ex-
pected terminal symbol classes) in comments enclosed by ‘/*’ and ‘*/’. The tail FIRST sets are
in comments at the ends of regular expressions in the grammar.

Example:

$ rege-test --dump-first simple.rg

S: /*["a" "b" "c"]*/ (["a" "b"] /* . */ C /* . */ C .)? ["b" "c"]

/*["a" "b" "c"]*/

;

C: . .

/* . */

;

Dumping Assembler Programs

Invoke the program using the following command-line format to dump assembler programs for
all nonterminal symbols of a regular expression grammar:

$ rege-test [options] --dump-asm REGEX_GRAMMAR_FILE

Example:

$ rege-test --dump-asm simple.rg

; Nonterminal symbol: C

; ---------------------

Chapter 8: Auxiliary Programs 336

prod "C", 0

rd "C", 0, 0, 2

; .

; .

ret

===

; Nonterminal symbol: S

; ---------------------

; BEG: (["a" "b"] C C .)? ["b" "c"]

prod "S", 0

; BEG: (["a" "b"] C C .)?

; FIRST: ["a" "b" "c"]

peek 1

joe 0, b1 ; "a"

joe 1, t1_1 ; "b"

jmp s1 ; "c"

t1_1:

; "b"

jprob 0.5, s1

jmp b1

s1:

prod "_S_1Q", 0

jmp e1

b1:

prod "_S_1Q", 1

; BEG: ["a" "b"] C C .

rd "_S_1Q", 1, 0, 1

; ["a" "b"]

call C, 4

call C, 5

rd "_S_1Q", 1, 3, 1

; .

; END: ["a" "b"] C C .

e1:

; END: (["a" "b"] C C .)?

rd "S", 0, 1, 1

; ["b" "c"]

; END: (["a" "b"] C C .)? ["b" "c"]

ret

Terminal symbols used in the regular expression grammar become terminal symbols for gen-
erated assembler programs.

See Section 8.5.2 [Assembler Instruction Set], page 329, for the description of an instruction
set used in the assembler programs. See Section 8.5.3 [Assembler Program Structure], page 331,
for the description of their building blocks.

All Command-Line Options

The program rege-test supports the following command-line options:

--dump-asm

Dump assembler programs representing the nonterminal symbols of the regular ex-
pression grammar. See [Dumping Assembler Programs], page 335, for more informa-
tion. By default, dump a loaded regular expression grammar instead of assembler
programs.

--dump-first

Dump the regular expression grammar and its FIRST sets (expected terminal sym-
bol classes) at various locations. See [Dumping the FIRST Sets], page 335, for more

Chapter 8: Auxiliary Programs 337

information. By default, dump a regular expression grammar without the FIRST
sets.

--simplify[=reachable|all]

Simplify the regular expression grammar before processing:

‘reachable’
Retain only reachable productions in the grammar.

‘all’ Remove unreachable productions and partially simplify the remaining
grammar.

If the option argument not specified, the program uses --simplify=all. If the
option not specified, the program does not simplify the loaded grammar.

-S, --retain=NONT

Retain a nonterminal symbol NONT in the regular expression grammar when sim-
plifying it. This option can occur multiple times on the command line. Use the op-
tion --simplify[=reachable|all] to perform grammar simplification. By default,
when simplifying a loaded grammar, the program might remove any nonterminal
symbol from it except for the start nonterminal symbol.

-q, --quiet

Do not dump the regular expression grammar—only return zero exit status if the
input grammar is correct, or print error messages and return non-zero exit status if
the grammar is incorrect. By default, the program can dump a regular expression
grammar if the option --dump-asm is absent on the command line.

--terse Dump regular expressions in the productions of the regular expression grammar in
condensed format. By default, dump those regular expressions in indented format.

8.7 least-sq-test

The purpose of this program is debugging finding the coefficients of a least-squares
regression function y=aa[0]+aa[1]*x+aa[2]*x*x for a set of points <xx[1],yy[1]>, ...,

<xx[n],yy[n]> and a solution of this function for y=x. The program topdown (see Section 7.3
[topdown], page 277) uses this solution as variable length of the cycle event history window and
grammar event history window. Use the option --ww=INT of topdown to forcibly set the length
(width) of those windows to a constant value.

Invoke the program least-sq-test using the following command-line format:
$ least-sq-test xx[1]:yy[1] xx[2]:yy[2] ... xx[n]:yy[n]

Example:
$ least-sq-test 1:8 2:17 8:29 9:24 11:8

"aa" : [

-3.000000000000114,

12.000000000000062,

-1.000000000000005

],

"xx" : 0.279846745544734

This output means that the least-squares regression function for the set of points <1, 8>, <2,
17>, <8, 29>, <9, 24>, and <11, 8> is y=-3+12x-x2, and that -3+12x-x2 is approximately equal
to 0.279846745544734 for x=0.279846745544734.

8.8 parse-asm

This program is for debugging converting the text of an assembler program to a memory rep-
resentation of this assembler program and converting the representation back to an assembler

Chapter 8: Auxiliary Programs 338

program text. You can also use the program parse-asm to obtain the result of preprocessing an
assembler program text. The program parse-asm does not convert a memory representation of
an assembler program to a node probability profile.

The program parse-asm supports a single optional argument specifying the name of a file
with an assembler program text. If this argument not supplied, parse-asm reads an assem-
bler program text from stdin. After parsing an assembler program text, parse-asm prints a
reinterpreted program text to stdout.

The program parse-asm supports the following command-line options:

-E Only preprocess an assembler program text and print a preprocessing result to std-
out. By default, preprocess an assembler program text, convert a preprocessing
result to a memory representation of an assembler program, convert the represen-
tation back to an assembler program text, and print it to stdout.

--no-preprocess

Do not preprocess an assembler program text before converting it to a memory
representation of an assembler program. This option has no effect if the option -E

is present. By default, preprocess an assembler program text before converting it to
a memory representation of an assembler program.

--no-space-after-comma

Do not print spaces after commas outside of comments and string literals. This
option has no effect if the option -E is present. By default, print spaces after
commas outside of comments and string literals.

--prob-prec=INT

The number of digits after the decimal point to print for probabilities. A non-
negative number specifies fixed-point notation. A negative number specifies expo-
nential notation with the number of digits after the decimal point equal to the
absolute value of this negative number. This option has no effect if the option -E is
present. The default value is 2.

-R, --margin-right=INT

A right margin column for comments. This option has no effect if the option -E is
present. By default, do not use a right margin.

--strip-comments

Do not print comments. This option has no effect if the option -E is present. Print
comments by default.

8.9 asm-disasm

The purpose of this program is debugging assembling a node, assigning values to its controlled
probability variables, and disassembling the node.

The program asm-disasm supports a single optional argument specifying the name of a file
with an assembler program text. If this argument not supplied, asm-disasm reads an assem-
bler program text from stdin. After assembling the node and optional assigning values to its
controlled probability variables, asm-disasm disassembles the node and prints a disassembled
program text to stdout.

To assemble a program, you need to specify its instruction set by passing a number of -I
STR[/INT] options, where each option defines an instruction class. The parameter STR specifies
an instruction class name. The program interprets characters ‘%’ in this name as equivalents to
spaces. The parameter INT specifies the number of instruction outcomes. If not supplied, the
default number of outcomes is 1.

Chapter 8: Auxiliary Programs 339

For example, to define an instruction set containing the instructions ‘nop1’, ‘user 0’, and
‘user 1’ with one outcome and the instruction ‘test 3’ with three outcomes, you specify the
following list of -I options:

-I nop1 -I ’user 0’ -I ’user 1’ -I ’test 3/3’

If an assembler program contains the definitions of probability variables, you can assign values
to those variables by passing a number of -P STR=FLOAT options, where STR is the name of a
controlled probability variable, and FLOAT is the value of this variable. For example, to assign
0.05 to the variable var1 and 0.15 to the variable var2, you use the following list of -P options:

-P var1=0.05 -P var2=0.15

The program asm-disasm supports the following command-line options:

-D, --determ-mat-action

Restrict the action emission matrix to define only deterministic action choices. In
this case, probabilities specified in the assembler program correspond to the state
transition matrix only, and there is no need to mark unnamed states by stt instruc-
tions.

--dont-reg-vars

Do not register all probability variables defined in the assembler program as con-
trolled probability variables.

--dump-action[=FILE]

Dump the action emission matrix to a file. If FILE not specified, the program
uses mat_action for it. See Section 4.4.2 [Dumping the Action Emission Matrix],
page 165, for the output format of that matrix.

--dump-goto[=FILE]

Dump the state transition matrix to a file. If FILE not specified, the program uses
mat_goto for it. See Section 4.4.1 [Dumping the State Transition Matrix], page 162,
for the output format of that matrix.

--dump-var-choice

On passing the option --dump-var-out[=FILE], dump output probabilities arrays
corresponding to choice instruction blocks.

--dump-var-out[=FILE]

Dump all output probability variables. On passing the option --dump-var-choice,
also dump output probabilities arrays corresponding to choice instruction blocks.
If FILE not specified, the program uses var_out for it.

-I, --instruction=STR[/INT]

Add an instruction class STR with INT outcomes to the instruction class set. The
program converts all characters ‘%’ in STR to spaces. The default number of out-
comes is 1.

-L, --large=PE|,PO|PE,PO

Use a large actor for the environment state identification engine with size PE of the
pool of probabilities lists in normal form and/or use a large actor for the instruction
emitting engine with size PO of the pool of probabilities lists in normal form. The
sizes should be sufficient to support storing in the pools all probabilities lists defined
by the assembler program. You can use large actors with map storage only (see the
option -S).

--no-nop Do not define the nop instruction class.

340

--prob-action-min=FLOAT

On passing the option --template, the option --prob-action-min=FLOAT specifies
the minimum probability of jprob and case instructions for the action emission
matrix to retain in the disassembled program. If the option --template not passed,
the option --prob-action-min=FLOAT specifies the minimum probability of user
or mixed-type instruction invocation—the disassembled program will not contain
instructions with lesser invocation probabilities.

--prob-goto-min=FLOAT

On passing the option --template, the option --prob-goto-min=FLOAT specifies
the minimum probability of jprob and case instructions for the state transition
matrix to retain in the disassembled program. If the option --template not passed,
the option --prob-goto-min=FLOAT specifies the minimum probability of state
transition—the disassembled program will not reflect state transitions with lesser
probabilities.

--prob-prec-mat=INT

The number of digits after the decimal point to print for probabilities in the state
transition matrix and action emission matrix. A positive number specifies fixed-
point notation. A negative number specifies exponential notation with the number
of digits after the decimal point equal to the absolute value of this negative number.
Zero is equivalent to default value −15.

--prob-prec-var=INT

The number of digits after the decimal point to print for the values of output prob-
ability variables and elements of output probabilities arrays. A positive number
specifies fixed-point notation. A negative number specifies exponential notation
with the number of digits after the decimal point equal to the absolute value of this
negative number. Zero is equivalent to default value −15.

-P, --variable=STR=FLOAT

Assign value FLOAT to a controlled probability variable STR defined in the assem-
bler program.

-S, --storage=flat|map

A statistics storage type:

‘flat’ Use preallocated storage with presumably large size but quick access to
data elements.

‘map’ Use dynamically allocated storage with presumably small size but slower
access to data elements. The implementation of functionality of STL map

template provides backing storage. This is the default mode.

--template

Generate the disassembled program using the input assembler program as an as-
sembler program template.

--use-stt

Include stt instructions in the disassembled program.

-W Show warnings generated while assembling the program.

341

GNU General Public License

Version 3, 29 June 2007
Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all
versions of a program—to make sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that
you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to
respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2)
offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software.
For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the
software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where
it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products.
If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict de-
velopment and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents
cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a
work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

http://fsf.org/

GNU General Public License 342

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body,
or, in the case of interfaces specified for a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included
in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b)
serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which
an implementation is available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the
executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activ-
ities. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the work, and the source code
for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by
intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable
provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified
Program. The output from running a covered work is covered by this License only if the output, given its content,
constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by
copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for running those works, provided that you comply
with the terms of this License in conveying all material for which you do not control copyright. Those thus making or
running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obli-
gations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and
you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant date.

b. The work must carry prominent notices stating that it is released under this License and any conditions added
under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work,
and all its parts, regardless of how they are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions
of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a

GNU General Public License 343

storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also
convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software
interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or
customer support for that product model, to give anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at
no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with
such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not
require recipients to copy the Corresponding Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code
and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or common use of that class
of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or
expects or is expected to use, the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use
of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other informa-
tion required to install and execute modified versions of a covered work in that User Product from a modified version
of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to
the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product
in which it has been modified or installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a
format that is publicly documented (and with an implementation available to the public in source code form), and
must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under applicable law. If additional permissions apply
only to part of the Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that
copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases
when you modify the work.) You may place additional permissions on material, added by you to a covered work, for
which you have or can give appropriate copyright permission.

GNU General Public License 344

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized
by the copyright holders of that material) supplement the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the
Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material
be marked in reasonable ways as different from the original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

e. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or
modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the
Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a
term that is a further restriction, you may remove that term. If a license document contains a further restriction but
permits relicensing or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated
as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including
any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation
of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the
work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to possession
of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the
Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

GNU General Public License 345

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated,
not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringe-
ment). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce
a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is
not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients.
“Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable
patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you
(or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a
work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey
the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of
the GNU General Public License “or any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for
the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

GNU General Public License 346

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according
to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil
liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this
is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where
the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of
course, your program’s commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for
the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see http://www.gnu.

org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library.
If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

347

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license
if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, Post-
Script or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according
to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards

http://fsf.org/

GNU Free Documentation License 348

disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

GNU Free Documentation License 349

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties—for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the
list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

GNU Free Documentation License 350

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can
decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copy-
rightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at
any time before August 1, 2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/

GNU Free Documentation License 351

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives
to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

352

Function and Macro Index

qsmm_actor_calc_action_prob 43
qsmm_actor_choice_sig_prob_release 44
qsmm_actor_create . 27
qsmm_actor_destroy . 27
qsmm_actor_enum_ngrams . 66
qsmm_actor_permut_add . 61
qsmm_actor_profile_add . 60
qsmm_actor_reg_sig_action . 47
qsmm_actor_reg_sig_in . 37
qsmm_actor_remove_ngram . 67
qsmm_actor_shl_sig . 37
qsmm_actor_shr_sig . 37
qsmm_actor_spur_delta . 34
qsmm_actor_time_delta . 35
qsmm_create . 108
qsmm_destroy . 109
qsmm_engine_create . 143
qsmm_engine_destroy . 144
qsmm_enum_ent . 171
qsmm_enum_var_prob . 211
qsmm_enum_var_prob_out . 216
qsmm_err_str . 18
qsmm_except_dump . 175
qsmm_find_instr_class_in_set_f_v2 130
qsmm_find_instr_class_in_set_fv_v2 130
qsmm_get_actor_auto_spur_type 64
qsmm_get_actor_choice_sig_prob 44
qsmm_get_actor_choice_sig_prob_vec 45
qsmm_get_actor_compat . 32
qsmm_get_actor_continuous_time 35
qsmm_get_actor_discrete_cycle_period_last . . . 41
qsmm_get_actor_discrete_cycle_period_mean . . . 41
qsmm_get_actor_discrete_time 35
qsmm_get_actor_ktemperature 57
qsmm_get_actor_large_model . 33
qsmm_get_actor_naction_per_evt 41
qsmm_get_actor_ngram_profile 62
qsmm_get_actor_ngram_sz . 32
qsmm_get_actor_nsig . 32
qsmm_get_actor_nsig_ctrl . 55
qsmm_get_actor_nsig_out . 33
qsmm_get_actor_nspur . 32
qsmm_get_actor_prob_action . 48
qsmm_get_actor_profile_nsig_ctrl 56
qsmm_get_actor_profile_pool_sz 32
qsmm_get_actor_random . 65
qsmm_get_actor_range_sig . 33
qsmm_get_actor_relprob_helper 52
qsmm_get_actor_relprob_type 49
qsmm_get_actor_rng . 65
qsmm_get_actor_sig_action . 45
qsmm_get_actor_sig_ngram . 39
qsmm_get_actor_sig_weight . 58
qsmm_get_actor_sparse_fill_max 33
qsmm_get_actor_spur . 34
qsmm_get_actor_spur_perception 54
qsmm_get_actor_spur_time . 36
qsmm_get_actor_spur_weight . 54
qsmm_get_actor_storage . 33
qsmm_get_actpair . 144
qsmm_get_actpair_actor_env 144

qsmm_get_actpair_actor_opt 144
qsmm_get_continue . 151
qsmm_get_default_dump_instr_desc 197
qsmm_get_default_dump_prg_desc 201
qsmm_get_determ_opt . 112
qsmm_get_eh_instr_class_set_name 117
qsmm_get_eh_instr_param . 118
qsmm_get_eh_instr_param_str 120
qsmm_get_eh_noutcome . 121
qsmm_get_ent_type_by_name . 172
qsmm_get_err_handler . 173
qsmm_get_instr_class_meta_name 131
qsmm_get_instr_class_name . 131
qsmm_get_instr_class_noutcome_v2 133
qsmm_get_instr_class_param_bin 132
qsmm_get_instr_class_param_str 132
qsmm_get_instr_class_set_handler 127
qsmm_get_instr_class_set_sz_v2 129
qsmm_get_instr_class_weight 155
qsmm_get_instr_class_weight_by_name_f 156
qsmm_get_instr_label . 196
qsmm_get_instr_meta_class_handler 116
qsmm_get_instr_nested . 196
qsmm_get_instr_nlabel . 196
qsmm_get_instr_nnested . 196
qsmm_get_instr_outcome . 153
qsmm_get_instr_type . 196
qsmm_get_la_sig . 154
qsmm_get_msg_type . 254
qsmm_get_msglist_msg . 255
qsmm_get_msglist_sz . 255
qsmm_get_msglist_sz_type . 255
qsmm_get_ngram_env_la_sz . 112
qsmm_get_nnode . 142
qsmm_get_node_array_prob_cycle 222
qsmm_get_node_array_prob_mat 220
qsmm_get_node_array_prob_out 220
qsmm_get_node_class_name . 141
qsmm_get_node_fq . 150
qsmm_get_node_nstate_v2 . 142
qsmm_get_node_ptr . 146
qsmm_get_node_recurs . 151
qsmm_get_node_state_by_name 207
qsmm_get_node_state_name . 208
qsmm_get_node_var_prob . 212
qsmm_get_node_var_prob_cycle 218
qsmm_get_node_var_prob_mat 214
qsmm_get_node_var_prob_out 217
qsmm_get_nsig_ngram_env_la 112
qsmm_get_nspur . 112
qsmm_get_nstate_max_v2 . 134
qsmm_get_prg_instr . 195
qsmm_get_prg_ninstr . 195
qsmm_get_prg_nstate_v2 . 205
qsmm_get_prg_nvar . 210
qsmm_get_prg_var_name . 210
qsmm_get_prob_action . 154
qsmm_get_prob_goto . 154
qsmm_get_ptr . 146
qsmm_get_rng . 160
qsmm_get_rng_default . 247

Function and Macro Index 353

qsmm_get_side_err_handler . 261
qsmm_get_side_name . 259
qsmm_get_side_trace_flags . 260
qsmm_get_side_trace_stream 261
qsmm_get_stack_frame . 160
qsmm_get_stack_frame_sz . 159
qsmm_get_stack_instr_class 159
qsmm_get_stack_node . 158
qsmm_get_stack_state . 158
qsmm_get_stack_sz . 158
qsmm_get_stack_sz_max . 112
qsmm_get_storage_cycle_next 88
qsmm_get_storage_cycle_next_redir 92
qsmm_get_storage_cycle_stats 84
qsmm_get_storage_cycle_stats_redir 91
qsmm_get_storage_cycle_update_hook 94
qsmm_get_storage_msglist . 95
qsmm_get_storage_nspur . 79
qsmm_get_storage_state_stats 81
qsmm_get_storage_state_stats_redir 90
qsmm_get_trace_flags . 161
qsmm_get_trace_stream . 162
qsmm_get_use_instr_class_weights 112
qsmm_get_vec_elm_by_pos_d . 250
qsmm_get_vec_npos . 250
qsmm_get_vec_pos_by_idx_v2 250
qsmm_instr_str . 196
qsmm_map_assign . 265
qsmm_map_clear . 266
qsmm_map_create . 262
qsmm_map_create_sz . 262
qsmm_map_destroy . 263
qsmm_map_erase . 266
qsmm_map_find . 266
qsmm_map_insert . 265
qsmm_map_is_empty . 265
qsmm_map_iter_are_equal . 267
qsmm_map_iter_assign . 267
qsmm_map_iter_begin . 267
qsmm_map_iter_create . 264
qsmm_map_iter_destroy . 264
qsmm_map_iter_end . 267
qsmm_map_iter_is_end . 267
qsmm_map_iter_key . 268
qsmm_map_iter_next . 267
qsmm_map_iter_prev . 267
qsmm_map_iter_rbegin . 267
qsmm_map_iter_rend . 267
qsmm_map_iter_set_val . 268
qsmm_map_iter_val . 268
qsmm_map_key_compar_func . 264
qsmm_map_key_compar_param . 264
qsmm_map_key_sz . 264
qsmm_map_lower_bound . 266
qsmm_map_multi_create . 262
qsmm_map_multi_create_sz . 262
qsmm_map_multi_iter_create 264
qsmm_map_size . 265
qsmm_map_upper_bound . 266
qsmm_map_val_sz . 264
qsmm_mat_action_dump_v2 . 165
qsmm_mat_goto_dump_v2 . 162
qsmm_msg_append_f . 253
qsmm_msg_append_fv . 253
qsmm_msg_clone . 253

qsmm_msg_create_f . 252
qsmm_msg_create_fv . 252
qsmm_msg_destroy . 253
qsmm_msg_str . 256
qsmm_msglist_add_msg . 255
qsmm_msglist_clear . 255
qsmm_msglist_create . 254
qsmm_msglist_destroy . 254
qsmm_msglist_dump . 258
qsmm_msglist_extend . 255
qsmm_node_asm . 204
qsmm_node_call_default . 149
qsmm_node_create_v2 . 139
qsmm_node_destroy . 140
qsmm_node_disasm . 190
qsmm_node_profile_clone . 224
qsmm_node_reserve . 141
qsmm_node_unload . 229
qsmm_node_var_out_forget . 219
qsmm_node_var_realize . 212
qsmm_parse_asm_source_buf . 202
qsmm_parse_asm_source_file 202
qsmm_parse_asm_source_stream 202
qsmm_preprocess_asm_source_buf 233
qsmm_preprocess_asm_source_file 234
qsmm_preprocess_asm_source_stream 233
qsmm_prg_destroy . 180
qsmm_prg_dump . 200
qsmm_reg_instr_class_set . 126
qsmm_reg_instr_class_v2 . 127
qsmm_reg_instr_meta_class . 115
qsmm_reg_var_prob . 210
qsmm_return_to_caller_node 151
qsmm_rng_create . 245
qsmm_rng_create_custom . 246
qsmm_rng_destroy . 246
qsmm_rng_seed . 247
qsmm_rng_uniform . 247
qsmm_rng_uniform_int . 247
qsmm_rng_uniform_pos . 247
qsmm_set_actor_auto_spur_type 64
qsmm_set_actor_discrete_time 35
qsmm_set_actor_ktemperature 57
qsmm_set_actor_naction_per_evt 42
qsmm_set_actor_ngram_profile 62
qsmm_set_actor_nsig_ctrl . 56
qsmm_set_actor_random . 65
qsmm_set_actor_relprob_helper 52
qsmm_set_actor_relprob_type 49
qsmm_set_actor_sig_weight . 59
qsmm_set_actor_spur_perception 54
qsmm_set_actor_spur_time . 36
qsmm_set_actor_spur_weight . 54
qsmm_set_continue . 151
qsmm_set_eh_instr_param_str_f 119
qsmm_set_eh_noutcome . 121
qsmm_set_err_handler . 173
qsmm_set_instr_class_weight 156
qsmm_set_instr_class_weight_by_name_f 156
qsmm_set_instr_meta_class_weight 157
qsmm_set_instr_outcome . 153
qsmm_set_la_sig . 155
qsmm_set_msg_lineno . 254
qsmm_set_node_nstate . 142
qsmm_set_node_profile_source 227

354

qsmm_set_node_ptr . 147
qsmm_set_node_var_prob . 212
qsmm_set_nstate_max . 134
qsmm_set_ptr . 146
qsmm_set_random . 161
qsmm_set_rng_default . 247
qsmm_set_side_err_handler . 261
qsmm_set_side_trace_flags . 261
qsmm_set_side_trace_stream 261
qsmm_set_stack_frame_sz . 159
qsmm_set_storage_cycle_next_redir 93
qsmm_set_storage_cycle_stats 85
qsmm_set_storage_cycle_stats_redir 91
qsmm_set_storage_cycle_update_hook 95
qsmm_set_storage_state_stats 82
qsmm_set_storage_state_stats_redir 90
qsmm_set_trace_flags . 162
qsmm_set_trace_stream . 162
qsmm_side_create . 259
qsmm_side_destroy . 259
qsmm_side_recv . 259
qsmm_side_send . 259
qsmm_side_trace_f . 261
qsmm_side_trace_fv . 261
qsmm_spur_delta . 148
qsmm_storage_enum_states . 87
qsmm_storage_remove_state . 86
qsmm_time_delta . 147
qsmm_trace_f . 162
qsmm_trace_fv . 162
qsmm_vec_clone . 251
qsmm_vec_destroy . 251
qsmm_version . 19
QSMM_ASM_DETERM_OPT . 203
QSMM_ASM_TEMPLATE . 204
QSMM_ASM_VAR_AUX . 204
QSMM_ASM_VAR_OUT . 204
QSMM_EVT_ACTIVATE . 115

QSMM_EVT_ENGINE_DONE . 115, 125
QSMM_EVT_ENGINE_INIT . 115, 125
QSMM_EVT_ENT_DONE . 114, 125
QSMM_EVT_ENT_INIT . 114, 124
QSMM_EVT_INSTR_CLASS_DONE . 114
QSMM_EVT_INSTR_CLASS_INIT . 114
QSMM_EVT_NODE_ENTER . 125
QSMM_EVT_NODE_LEAVE . 126
QSMM_FMT_PRI_SIG . 14
QSMM_FMT_PRI_SSIG . 14
QSMM_FMT_SCN_SIG . 14
QSMM_HAS_INSTR_CLASS . 118
QSMM_HEADERS_VERSION . 19
QSMM_INSTR_CLASS_SET . 123
QSMM_INSTR_META_CLASS . 113
QSMM_NODE_CLONE_STATE_NAMES 225
QSMM_NODE_CLONE_TEMPLATE . 225
QSMM_NODE_CLONE_VARS . 224
QSMM_NODE_CREATE . 140
QSMM_REG_INSTR_CLASS . 128
QSMM_REG_INSTR_CLASS_PARAM 128
QSMM_REG_INSTR_CLASS_SET_PARAM 126
QSMM_REG_INSTR_META_CLASS_PARAM 115
QSMM_REG_VAR_PROB . 211
QSMM_RNG_CMD_CREATE . 248
QSMM_RNG_CMD_DESTROY . 248
QSMM_RNG_CMD_GENERATE . 248
QSMM_RNG_CMD_SEED . 249
QSMM_SIDE_RECV . 260
QSMM_SIDE_SEND . 260
QSMM_SIDE_TRACE_API . 260
QSMM_SIDE_TRACE_MSG . 260
QSMM_SIG_INVALID . 14
QSMM_SIG_MAX . 14
QSMM_TERMINATE . 152
QSMM_TRACE_API . 161
QSMM_TRACE_CTRL . 161
QSMM_TRACE_EVT . 161

355

Type Index

qsmm_actor_desc_s . 27
qsmm_actor_large_desc_s . 31
qsmm_actor_sig_spec_e . 30
qsmm_actor_sig_spec_in_out_s 30
qsmm_actor_sig_spec_mask_s . 30
qsmm_actor_sig_spec_u . 30
qsmm_actor_t . 27
qsmm_actpair_t . 144
qsmm_compar_func_t . 263
qsmm_cspur_s . 81
qsmm_cycle_s . 80
qsmm_desc_s . 109
qsmm_disasm_desc_s . 191
qsmm_dump_instr_desc_s . 197
qsmm_dump_mat_action_desc_s 166
qsmm_dump_mat_goto_desc_s . 163
qsmm_dump_msg_desc_s . 256
qsmm_dump_prg_desc_s . 201
qsmm_enum_ent_callback_func_t 172
qsmm_enum_ngram_callback_func_t 67
qsmm_enum_state_callback_func_t 88
qsmm_err_handler_func_t . 173
qsmm_except_evthndlr_s . 176
qsmm_except_exist_s . 176
qsmm_except_noeqclas_s . 177
qsmm_except_nostate_s . 176
qsmm_except_notfound_s . 175
qsmm_except_outcome_s . 176
qsmm_except_profsrcp_s . 177
qsmm_except_profsrcu_s . 177
qsmm_except_psumgt1_s . 177
qsmm_except_s . 173
qsmm_except_type_s . 175
qsmm_except_u . 174
qsmm_get_cycle_next_func_t . 92
qsmm_get_cycle_stats_func_t 90
qsmm_get_state_stats_func_t 89
qsmm_gref_e . 170
qsmm_gref_s . 171
qsmm_gref_u . 170

qsmm_handle_e . 16
qsmm_handle_lref_s . 170
qsmm_handle_lref2_s . 171
qsmm_handle_s . 18
qsmm_handle_u . 17
qsmm_instr_class_s . 169
qsmm_instr_class_set_func_t 124
qsmm_instr_e . 195
qsmm_instr_meta_class_func_t 114
qsmm_instr_t . 180
qsmm_iter_t . 264
qsmm_lref_e . 168
qsmm_lref_s . 169
qsmm_lref_u . 168
qsmm_map_t . 262
qsmm_mat_e . 214
qsmm_msg_e . 252
qsmm_msg_t . 252
qsmm_msglist_t . 254
qsmm_pair_sig_s . 31
qsmm_prg_t . 179
qsmm_prob_e . 42
qsmm_proxy_func_t . 247
qsmm_relprob_e . 49
qsmm_relprob_user1_func_t . 51
qsmm_relprob_user2_func_t . 51
qsmm_rng_cmd_seed_in_s . 249
qsmm_rng_t . 245
qsmm_side_t . 259
qsmm_sig_t . 13
qsmm_spur_perception_e . 53
qsmm_ssig_t . 14
qsmm_sspur_s . 80
qsmm_state_s . 79
qsmm_storage_t . 79
qsmm_t . 108
qsmm_time_e . 35
qsmm_update_cycle_stats_func_t 93
qsmm_vec_t . 250

356

Concept Index

A
action choice state . 23
action choice state condition . 79
action emission matrix . 138, 165
actor . 5, 22
actor handle . 27
actor n-gram buffer . 36
actor pair . 144
actor temperature . 57
actor, large . 25
actor, small . 24
adaptive behavior mode . 65, 161
adaptive probabilistic mapping 5, 22
aggregate statistics . 218
array, output probabilities . 219
assembler instruction . 181
assembler instruction, user 181, 190
assembler program . 180
assembler program handle . 179
assembler program section, data 209
assembler program, destroying 180
assembler program, parsing . 202
assembler program, preprocessing 229
assembling a node . 203
automatic spur . 63
automaton state . 4, 23, 63
auxiliary probability variable . 224

B
basic node parameters . 137
behavior mode . 65, 161
binary instruction parameters 116
built-in instruction . 181

C
callback function, enumeration 67, 87, 172
calling a node . 149
canonical instruction parameters 120
choice complexity . 7
class, instruction . 107, 116, 127
cloning a probability profile 224, 226
complexity, choice . 7
condition for an action choice state 79
continuous cycle period . 38
continuous time . 35, 147
control, possessing by a node . 104
control, returning from a node 151
control, transferring to a node 149
controlled probability variable 210
creating a map . 262
creating a message . 252
creating a message list . 254
creating a model . 108
creating a model instance . 143
creating a node . 139
creating a random number generator 245
creating an actor . 27
creating an iterator . 264

cycle direction . 37
cycle period . 38
cycle start time . 37
cycle type . 37, 53
cycle type statistics . 80
cycle type statistics update, intercepting 93

D
data section, assembler program 209
destroying a map . 263
destroying a message . 253
destroying a message list . 254
destroying a model . 109
destroying a model instance . 144
destroying a node . 140
destroying a random number generator 246
destroying a vector . 251
destroying an actor . 27
destroying an assembler program 180
destroying an iterator . 264
direction, cycle . 37
direction, signal . 29
disassembling a node . 190
discrete cycle period . 38
discrete cycle period, mean . 49
discrete time . 34

E
entity identifier, global . 170
entity identifier, local . 168
entity reference, global . 169
entity reference, local . 168
entity type . 168
enumeration callback function 67, 87, 172
environment state identification engine 104
error handler function . 172, 261
event handler, instruction class set 123, 126, 135
event handler, instruction meta-class . . . 113, 115, 122
event history . 22
event type, instruction class set 124
event type, instruction meta-class 114
excitatory (positive) spur . 63
execution, model . 143, 151
execution, node . 104, 149
extended node parameters . 137

F
flat storage . 78
function, enumeration callback 67, 87, 172
function, error handler . 172, 261
function, event handler . 113, 123
function, key comparison . 263
function, proxy . 247
function, relative probability . 48
function, statistics update interception 93
function, storage redirection . 89

Concept Index 357

G
global entity identifier . 170
global entity reference . 169

H
handle . 15
handle, actor . 27
handle, actor pair . 144
handle, assembler instruction . 180
handle, assembler program . 179
handle, iterator . 264
handle, map . 262
handle, message . 252
handle, message list . 254
handle, model . 108
handle, random number generator 245
handle, side . 259
handle, storage . 79
handle, vector . 250

I
incrementing spur . 34, 148
incrementing time . 35, 147
inhibitory (negative) spur . 63
input signal . 22
instance, instruction . 107
instance, model . 143
instruction class . 107, 116, 127
instruction class name . 117
instruction class set . 107, 123
instruction class weight . 155
instruction emitting engine . 104
instruction handle . 180
instruction instance . 107
instruction invocation . 152
instruction meta-class . 107, 113
instruction outcome . 107, 121, 153
instruction parameters, binary 116
instruction parameters, canonical 120
instruction parameters, text . 117
instruction, assembler . 181
instruction, user . 181, 190
intelligence . 2
interaction side . 259
intercepting cycle type statistics update 93
invocation, instruction . 152
iterator handle . 264

K
key comparison function . 263

L
large actor . 25
learning . 104
loading a probability profile into a node 203
local entity . 168
look-ahead signal . 154

M
map handle . 262
map storage . 78
map, creating . 262
map, destroying . 263
mapping, probabilistic . 4
matrix, action emission . 138, 165
matrix, state transition . 137, 162
mean discrete cycle period . 49
mean nominal number of output signals 55
message handle . 252
message list handle . 254
message, creating . 252
message, destroying . 253
meta-class, instruction . 107, 113
mixed-type instruction . 181
mode, behavior . 65, 161
model execution . 143, 151
model handle . 108
model instance, creating . 143
model instance, destroying . 144
model, creating . 108
model, destroying . 109
model, state . 2
multinode model . 5, 104

N
n-gram buffer, actor . 36
n-gram, action choice state . 23
name, instruction class . 117
name, instruction class set . 123
name, instruction meta-class 107, 113
name, state . 184, 207
node . 5, 104
node class, instruction class set 123
node execution . 104, 149
node identifier, reserved . 141
node parameters . 137
node, assembling . 203
node, calling . 149
node, creating . 139
node, destroying . 140
node, disassembling . 190
node, loading a probability profile into 203
node, possessing control . 104
node, returning control from . 151
node, transferring control to . 149
node, unloading a probability profile from 229
nominal number of output signals 55
normalization, probabilities list 59
number of output signals, nominal 55

O
outcome, instruction 107, 121, 153
output probabilities array . 219
output probability variable . 213
output signal . 22
output signal permutation . 59
output signal weight . 58

Concept Index 358

P
parameters, assembler instruction 116
parameters, node . 137
parsing an assembler program 202
perceived state . 4
perception, spur . 53
period, cycle . 38
permutation, output signals . 59
pool, output signal permutations 59
pool, probabilities lists in normal form 59
possessing control by a node . 104
preprocessing an assembler program 229
probabilistic mapping . 4
probabilistic mapping, adaptive . 5
probabilities list normalization . 59
probability profile, cloning 224, 226
probability profile, loading into a node 203
probability profile, preloaded 58, 59
probability profile, unloading from a node 229
probability variable . 209
probability variable, auxiliary . 224
probability variable, controlled 210
probability variable, defining . 209
probability variable, output . 213
program, assembler . 180
proxy function . 247
pseudo-random number generator 245

R
random behavior mode . 65, 161
random number generator, creating 245
random number generator, destroying 246
registering an interaction side . 259
reinforcement learning . 3
relative probability function . 48
reserved node identifier . 141
returning control from a node 151
run, model . 143

S
section, assembler program . 180
Side API . 258
side handle . 259
signal . 13
signal direction . 29
signal, input . 22
signal, look-ahead . 154
signal, output . 22
small actor . 24
spur . 4
spur perception . 53
spur scheme . 34
spur type . 4
spur weight . 54
spur, automatic . 63
spur, excitatory (positive) . 63

spur, incrementing . 34, 148
spur, inhibitory (negative) . 63
stack frame, system . 158
stack frame, user . 159
state . 4
state model . 2
state name . 184, 207
state sub-model . 5
state transition matrix . 137, 162
state, automaton . 4, 23, 63
statistics for a cycle type . 80
statistics, aggregate . 218
STL map template . 262
storage handle . 79
storage redirection . 78
storage redirection function . 89
storage type . 78
sub-model, state . 5
system stack frame . 158

T
temperature, actor . 57
terminating model execution . 151
text instruction parameters 117, 119
text instruction parameters, canonical 120
time type . 34
time, continuous . 35, 147
time, cycle start . 37
time, discrete . 34
time, incrementing . 35, 147
trace log . 161, 260
transferring control to a node . 149
type, cycle . 37, 53
type, entity . 168
type, spur . 4
type, storage . 78
type, time . 34

U
unloading a probability profile from a node 229
unregistering an interaction side 259
user instruction . 181, 190
user stack frame . 159

V
variable, auxiliary . 224
variable, controlled . 210
variable, output . 213
vector handle . 250
vector, destroying . 251

W
weight, instruction class . 155
weight, output signal . 58
weight, spur type . 54

	Acknowledgements
	Introduction
	What Is Intelligence?
	Spur-driven Behavior
	Building Blocks for Intelligent Machines
	Animate Machines
	Obtaining QSMM
	Reporting Bugs and Getting Help
	QSMM Components
	System Requirements
	Installation
	API Basics
	Header Files
	Basic Datatypes and Macros
	Object Handles
	Error Handling
	Getting Library Version

	Linking with the Library
	Conventions for Datatypes

	Adaptive Probabilistic Mapping
	Event History
	Output Signal Selection
	Small and Large Actors
	Creating an Actor
	Repeated Sequence of Operations
	Incrementing Spur
	Incrementing Time
	Receiving Input Signals
	Emitting an Output Signal

	Customizing the Relative Probability Function
	Relative Probability Function Types
	Helper Relative Probability Functions
	Spur Perception
	Spur Weight
	Number of Output Signals
	Actor Temperature

	Specifying Output Signal Weights
	Setting a Weight for an Output Signal
	Preloading a Probability Profile
	Assigning a Preloaded Probability Profile

	Automatic Spur
	Switching Adaptive or Random Behavior
	Revising Action Choice States
	Example of Using the Actor API

	Statistics Storage
	Storage Types
	Structures for Accessing Storage
	Retrieving and Storing Statistics
	Enumerating Action Choice States and Cycle Types
	Providing Initial Statistics
	Intercepting the Updates of Cycle Type Statistics
	Getting the Reason of a Storage Failure
	Example of Using the Storage API

	Multinode Model
	Principle of Operation
	Creating a Multinode Model
	Creating a Handle
	Defining Instruction Meta-classes
	Function Declaration
	Event Handling
	Registering the Function
	Instruction Class Identifiers
	Accessing Binary Instruction Parameters
	Setting Text Instruction Parameters
	Setting the Number of Instruction Outcomes
	Function Layout

	Defining Instruction Class Sets
	Function Declaration
	Event Handling
	Registering the Function
	Registering Instruction Classes
	Setting the Number of States
	Function Layout

	Node Parameters
	Creating Nodes
	Creating the Model Instance
	Associating Parameters with a Model

	Executing a Multinode Model
	Incrementing Time and Spur
	Transferring Control between Nodes
	Calling a Node
	Returning Control from a Node
	Terminating Model Execution

	Handling Instruction Invocation
	Setting Look-ahead Signals
	Setting Instruction Classes Weights
	Working with the Node Call Stack
	Switching Adaptive or Random Behavior
	Tracing Model Execution

	Listing a Multinode Model
	Dumping the State Transition Matrix
	Dumping the Action Emission Matrix
	Entity References
	Enumerating Entities

	Error Handling for a Multinode Model

	Assembler Programs
	Basic Datatypes
	Assembler Program Syntax
	Assembler Instructions
	jmp Instruction
	jprob Instruction
	choice Instruction Block
	joe Instruction
	stt Instruction
	nop and nop1 Instructions
	lookup Instruction
	abort Instruction
	User Instructions

	Disassembling a Node
	Inspecting an Assembler Program
	Printing an Assembler Program
	Parsing an Assembler Program
	Loading a Parsed Program into a Node
	Using Probability Variables
	Variables in an Assembler Program
	Controlled Variables
	Output Variables
	Output Arrays
	Auxiliary Variables

	Cloning the Probability Profile
	Memory Efficient Cloning the Probability Profile
	Unloading the Probability Profile
	Using the Assembler Preprocessor
	Changing Line Number and File Name
	Including Other Source Files
	Defining Symbols
	Defining Macros
	Generating Unique Location Labels
	Getting Preprocessed Output

	Example of Working with an Assembler Program

	Miscellaneous Topics
	Random Number Generators
	Creating a Random Number Generator
	Generating Random Numbers
	Custom Random Number Generators

	Ordinary and Sparse Vectors
	Messages and Message Lists
	Creating Messages
	Creating a Message List
	Adding Messages to a Message List
	Printing Messages

	Exchanging Data Packets in a Multithreaded Program [EXPERIMENTAL]
	Registering Interaction Sides
	Exchanging Data Packets Between Sides
	Tracing the Exchange of Data Packets
	Error Handling

	The Implementation of Functionality of STL map Template
	Creating Maps and Iterators
	Operations on Maps
	Operations on Iterators

	Example Programs
	pic-guess
	test
	topdown
	Template Grammar Format
	Parsing a Token Sequence
	Output Information
	Iterative Determinization
	Examples

	Auxiliary Programs
	pcfg-generate-seq
	pcfg-predict-eval
	mk-rg-vit.sh
	pcfg-reach
	rege-asm
	Command-Line Format
	Assembler Instruction Set
	Assembler Program Structure

	rege-test
	least-sq-test
	parse-asm
	asm-disasm

	GNU General Public License
	GNU Free Documentation License
	Function and Macro Index
	Type Index
	Concept Index

